File size: 9,121 Bytes
6e06b7a baf381a 6e06b7a baf381a 6e06b7a baf381a 6e06b7a baf381a 6e06b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
from transformers import AutoConfig
from huggingface_hub import list_models
import asyncio
from typing import List
import time
from functools import lru_cache
# Credits: This implementation is derived from and builds upon the excellent work by gaunernst
# Original implementation: https://huggingface.co/spaces/gaunernst/kv-cache-calculator
search_cache = {}
POPULAR_MODELS = [
"Qwen/Qwen3-30B-A3B",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-large",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"deepseek-ai/DeepSeek-V2-Chat",
"deepseek-ai/DeepSeek-V3-Base",
"google/gemma-2-9b",
"google/gemma-2-27b",
"Qwen/QwQ-32B-Preview",
"Qwen/Qwen2.5-72B-Instruct",
"anthropic/claude-3-haiku-20240307",
]
def search_models(query: str, max_results: int = 50) -> List[str]:
if not query or len(query.strip()) < 1:
return POPULAR_MODELS[:15]
query = query.strip()
cache_key = f"{query.lower()}_{max_results}"
current_time = time.time()
if cache_key in search_cache:
cached_result, cache_time = search_cache[cache_key]
if current_time - cache_time < 300:
return cached_result
try:
print(f"Searching HF Hub for: {query}")
models = list_models(
search=query,
task="text-generation",
library="transformers",
sort="downloads",
direction=-1,
limit=max_results * 2,
full=False
)
all_matches = []
seen_models = set()
for model in POPULAR_MODELS:
if query.lower() in model.lower() and model not in seen_models:
all_matches.append(model)
seen_models.add(model)
for model in models:
if model.id not in seen_models and len(all_matches) < max_results:
all_matches.append(model.id)
seen_models.add(model.id)
if len(all_matches) < max_results // 2:
try:
broader_models = list_models(
search=query,
library="transformers",
sort="downloads",
direction=-1,
limit=max_results * 2
)
for model in broader_models:
if model.id not in seen_models and len(all_matches) < max_results:
model_id_lower = model.id.lower()
if any(keyword in model_id_lower for keyword in ['chat', 'instruct', 'base', 'model']):
all_matches.append(model.id)
seen_models.add(model.id)
except Exception as e:
print(f"Broader search failed: {e}")
result = all_matches[:max_results]
search_cache[cache_key] = (result, current_time)
if len(search_cache) > 20:
oldest_key = min(search_cache.keys(), key=lambda k: search_cache[k][1])
del search_cache[oldest_key]
return result
except Exception as e:
print(f"Search error: {e}")
popular_matches = [model for model in POPULAR_MODELS if query.lower() in model.lower()]
return popular_matches if popular_matches else POPULAR_MODELS[:15]
def calculate(name: str, ctx_len: int, num_users: int, dtype: str, hf_token: str):
hf_token = hf_token.strip()
try:
cfg = AutoConfig.from_pretrained(
name,
trust_remote_code=True,
token=hf_token or None,
)
except Exception as e:
raise gr.Error(e)
use_mla = cfg.architectures[0].startswith(("DeepseekV2", "DeepseekV3"))
if hasattr(cfg, "text_config"):
cfg = cfg.text_config
num_layers = cfg.num_hidden_layers
num_attention_heads = cfg.num_attention_heads
num_kv_heads = getattr(cfg, "num_key_value_heads", num_attention_heads)
if use_mla:
attention_type = "MLA"
elif num_kv_heads == num_attention_heads:
attention_type = "MHA"
else:
attention_type = "GQA"
model_config = [
["num_layers", num_layers],
["max_ctx_len", cfg.max_position_embeddings],
["attention_type", attention_type],
["num_attention_heads", num_attention_heads],
["num_kv_heads", num_kv_heads],
]
if ctx_len > cfg.max_position_embeddings:
gr.Warning(
"Requested context length is larger than the max value supported by the model"
)
if use_mla:
kv_lora_rank = cfg.kv_lora_rank
qk_rope_head_dim = cfg.qk_rope_head_dim
nelems_per_token = num_layers * (kv_lora_rank + qk_rope_head_dim)
model_config.append(["kv_lora_rank", kv_lora_rank])
model_config.append(["qk_rope_head_dim", qk_rope_head_dim])
model_config.append(["calc_formula", f"{num_layers} * ({kv_lora_rank} + {qk_rope_head_dim})"])
else:
head_dim = getattr(cfg, "head_dim", cfg.hidden_size // num_attention_heads)
nelems_per_token = num_layers * num_kv_heads * head_dim * 2
model_config.append(["head_dim", head_dim])
if attention_type == "GQA":
kv_ratio = num_attention_heads // num_kv_heads
model_config.append(["gqa_ratio", f"{kv_ratio}:1"])
model_config.append(["calc_formula", f"{num_layers} * {num_kv_heads} * {head_dim} * 2"])
if dtype == "fp16/bf16":
nbytes_per_elem = 2
elif dtype == "fp8":
nbytes_per_elem = 1 + 2 / cfg.hidden_size # assume per-token scaling
elif dtype == "fp4":
nbytes_per_elem = 0.5 + 2 / 32 # 4-bit weights + scaling factor every 32 elements (MXFP4)
kv_cache_size = nelems_per_token * ctx_len * num_users * nbytes_per_elem / 1e9
return kv_cache_size, model_config
DESCRIPTION = (
"Calculate KV cache memory requirements for transformer models. "
"Supports MHA, GQA, and MLA attention mechanisms with fp16/bf16, fp8, and fp4 data types."
)
def search_and_update_models(query):
if not query or len(query.strip()) < 2:
return gr.Dropdown(choices=POPULAR_MODELS)
search_results = search_models(query.strip(), max_results=50)
if query.strip() not in search_results:
search_results.insert(0, query.strip())
return gr.Dropdown(choices=search_results, value=query.strip())
with gr.Blocks(title="KV Cache Calculator", theme=gr.themes.Soft()) as demo:
gr.Markdown("# KV Cache Calculator")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model_search = gr.Textbox(
label="π Search Models",
placeholder="Type model name (e.g., llama, qwen, mistral...)",
value="Qwen/Qwen3-30B-A3B",
info="Search the entire HuggingFace Hub database"
)
model_dropdown = gr.Dropdown(
label="π Select Model",
choices=POPULAR_MODELS,
value="Qwen/Qwen3-30B-A3B",
allow_custom_value=True,
info="Models matching your search - or type a custom model ID"
)
with gr.Row():
gr.Markdown("**π‘ Tip:** Search updates the dropdown with real HF Hub results")
ctx_len = gr.Number(label="Context Length", value=128_000, minimum=1)
num_users = gr.Number(label="Number of Users", value=1, minimum=1)
dtype = gr.Dropdown(
label="KV Cache Data Type",
choices=["fp16/bf16", "fp8", "fp4"],
value="fp16/bf16"
)
hf_token = gr.Textbox(
label="HuggingFace Token (optional)",
type="password",
placeholder="For gated models"
)
calculate_btn = gr.Button("Calculate KV Cache Size", variant="primary")
with gr.Column():
cache_size = gr.Number(label="KV Cache Size (GB)", precision=2)
model_config = gr.Dataframe(
label="Model Configuration",
headers=["Parameter", "Value"],
datatype=["str", "str"],
wrap=True
)
model_search.change(
fn=search_and_update_models,
inputs=[model_search],
outputs=[model_dropdown],
show_progress=False
)
calculate_btn.click(
fn=calculate,
inputs=[model_dropdown, ctx_len, num_users, dtype, hf_token],
outputs=[cache_size, model_config]
)
demo.css = """
.gradio-container {
max-width: 1000px !important;
margin: 0 auto !important;
}
"""
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
allowed_paths=[],
app_kwargs={"docs_url": None, "redoc_url": None}
)
|