Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,18 +6,9 @@ import gradio as gr
|
|
| 6 |
import numpy as np
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
-
from diffusers import
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
-
# Make sure PEFT is installed
|
| 13 |
-
try:
|
| 14 |
-
import peft
|
| 15 |
-
except ImportError:
|
| 16 |
-
import subprocess
|
| 17 |
-
print("Installing PEFT library...")
|
| 18 |
-
subprocess.check_call(["pip", "install", "peft"])
|
| 19 |
-
import peft
|
| 20 |
-
|
| 21 |
# Create permanent storage directory
|
| 22 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
| 23 |
if not os.path.exists(SAVE_DIR):
|
|
@@ -25,17 +16,28 @@ if not os.path.exists(SAVE_DIR):
|
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 28 |
-
|
| 29 |
|
| 30 |
-
# Initialize pipeline
|
| 31 |
print("Loading pipeline...")
|
| 32 |
-
# Use
|
| 33 |
-
pipeline =
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
pipeline = pipeline.to(device)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
MAX_SEED = np.iinfo(np.int32).max
|
| 40 |
MAX_IMAGE_SIZE = 1024
|
| 41 |
|
|
@@ -56,28 +58,6 @@ def save_generated_image(image, prompt):
|
|
| 56 |
|
| 57 |
return filepath
|
| 58 |
|
| 59 |
-
def load_generated_images():
|
| 60 |
-
if not os.path.exists(SAVE_DIR):
|
| 61 |
-
return []
|
| 62 |
-
|
| 63 |
-
# Load all images from the directory
|
| 64 |
-
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
| 65 |
-
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
| 66 |
-
# Sort by creation time (newest first)
|
| 67 |
-
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
| 68 |
-
return image_files
|
| 69 |
-
|
| 70 |
-
def load_predefined_images():
|
| 71 |
-
predefined_images = [
|
| 72 |
-
"assets/r1.webp",
|
| 73 |
-
"assets/r2.webp",
|
| 74 |
-
"assets/r3.webp",
|
| 75 |
-
"assets/r4.webp",
|
| 76 |
-
"assets/r5.webp",
|
| 77 |
-
"assets/r6.webp",
|
| 78 |
-
]
|
| 79 |
-
return predefined_images
|
| 80 |
-
|
| 81 |
# Function to ensure "nsfw" and "[trigger]" are in the prompt
|
| 82 |
def process_prompt(prompt):
|
| 83 |
# Add "nsfw" prefix if not already present
|
|
@@ -112,21 +92,31 @@ def inference(
|
|
| 112 |
seed = random.randint(0, MAX_SEED)
|
| 113 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 114 |
|
| 115 |
-
# Use joint_attention_kwargs to control LoRA scale
|
| 116 |
-
# (FluxPipeline may use a different parameter name but attempt both)
|
| 117 |
try:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
except Exception as e:
|
| 128 |
-
|
| 129 |
-
|
| 130 |
image = pipeline(
|
| 131 |
prompt=processed_prompt,
|
| 132 |
guidance_scale=guidance_scale,
|
|
@@ -134,17 +124,17 @@ def inference(
|
|
| 134 |
width=width,
|
| 135 |
height=height,
|
| 136 |
generator=generator,
|
| 137 |
-
cross_attention_kwargs={"scale": lora_scale},
|
| 138 |
).images[0]
|
| 139 |
|
| 140 |
# Save the generated image
|
| 141 |
filepath = save_generated_image(image, processed_prompt)
|
| 142 |
|
| 143 |
-
# Return the image, seed, and
|
| 144 |
-
return image, seed, processed_prompt
|
| 145 |
-
|
| 146 |
-
examples = "A young couple, their bodies glistening with sweat, make love in the rain, the woman"
|
| 147 |
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
# Brighter custom CSS with vibrant colors
|
| 150 |
custom_css = """
|
|
@@ -187,125 +177,80 @@ button:hover {
|
|
| 187 |
transform: translateY(-2px);
|
| 188 |
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
| 189 |
}
|
| 190 |
-
.tabs {
|
| 191 |
-
margin-top: 20px;
|
| 192 |
-
}
|
| 193 |
-
.gallery {
|
| 194 |
-
background-color: rgba(255, 255, 255, 0.5);
|
| 195 |
-
border-radius: 10px;
|
| 196 |
-
padding: 10px;
|
| 197 |
-
}
|
| 198 |
"""
|
| 199 |
|
| 200 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
| 201 |
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
|
| 202 |
|
| 203 |
-
#
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
container=False,
|
| 215 |
-
)
|
| 216 |
-
run_button = gr.Button("Generate", variant="primary", scale=0)
|
| 217 |
-
|
| 218 |
-
result = gr.Image(label="Result", show_label=False)
|
| 219 |
-
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
|
| 220 |
-
|
| 221 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 222 |
-
seed = gr.Slider(
|
| 223 |
-
label="Seed",
|
| 224 |
-
minimum=0,
|
| 225 |
-
maximum=MAX_SEED,
|
| 226 |
-
step=1,
|
| 227 |
-
value=42,
|
| 228 |
-
)
|
| 229 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 230 |
-
|
| 231 |
-
with gr.Row():
|
| 232 |
-
width = gr.Slider(
|
| 233 |
-
label="Width",
|
| 234 |
-
minimum=256,
|
| 235 |
-
maximum=MAX_IMAGE_SIZE,
|
| 236 |
-
step=32,
|
| 237 |
-
value=1024,
|
| 238 |
-
)
|
| 239 |
-
height = gr.Slider(
|
| 240 |
-
label="Height",
|
| 241 |
-
minimum=256,
|
| 242 |
-
maximum=MAX_IMAGE_SIZE,
|
| 243 |
-
step=32,
|
| 244 |
-
value=768,
|
| 245 |
-
)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
label="Guidance scale",
|
| 250 |
-
minimum=0.0,
|
| 251 |
-
maximum=10.0,
|
| 252 |
-
step=0.1,
|
| 253 |
-
value=3.5,
|
| 254 |
-
)
|
| 255 |
-
num_inference_steps = gr.Slider(
|
| 256 |
-
label="Number of inference steps",
|
| 257 |
-
minimum=1,
|
| 258 |
-
maximum=50,
|
| 259 |
-
step=1,
|
| 260 |
-
value=30,
|
| 261 |
-
)
|
| 262 |
-
lora_scale = gr.Slider(
|
| 263 |
-
label="LoRA scale",
|
| 264 |
-
minimum=0.0,
|
| 265 |
-
maximum=1.0,
|
| 266 |
-
step=0.1,
|
| 267 |
-
value=1.0,
|
| 268 |
-
)
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
gallery_header = gr.Markdown("### Your Generated Images")
|
| 278 |
-
generated_gallery = gr.Gallery(
|
| 279 |
-
label="Generated Images",
|
| 280 |
-
columns=3,
|
| 281 |
-
show_label=False,
|
| 282 |
-
value=load_generated_images(),
|
| 283 |
-
elem_id="generated_gallery",
|
| 284 |
-
elem_classes="gallery",
|
| 285 |
-
height="auto"
|
| 286 |
)
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
|
| 310 |
gr.on(
|
| 311 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -320,7 +265,7 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
| 320 |
num_inference_steps,
|
| 321 |
lora_scale,
|
| 322 |
],
|
| 323 |
-
outputs=[result, seed, processed_prompt_display
|
| 324 |
)
|
| 325 |
|
| 326 |
demo.queue()
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
from diffusers import AutoPipelineForText2Image
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Create permanent storage directory
|
| 13 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
| 14 |
if not os.path.exists(SAVE_DIR):
|
|
|
|
| 16 |
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 19 |
+
lora_id = "seawolf2357/nsfw-detection" # LoRA model
|
| 20 |
|
|
|
|
| 21 |
print("Loading pipeline...")
|
| 22 |
+
# Use AutoPipelineForText2Image which has better compatibility with LoRA loading
|
| 23 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 24 |
+
repo_id,
|
| 25 |
+
torch_dtype=torch.bfloat16,
|
| 26 |
+
use_safetensors=True
|
| 27 |
+
)
|
| 28 |
pipeline = pipeline.to(device)
|
| 29 |
|
| 30 |
+
# Try to load the LoRA with direct method (simpler approach)
|
| 31 |
+
print("Loading LoRA weights...")
|
| 32 |
+
try:
|
| 33 |
+
pipeline.load_lora_weights(lora_id)
|
| 34 |
+
print("LoRA weights loaded successfully!")
|
| 35 |
+
lora_loaded = True
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Could not load LoRA weights using standard method: {e}")
|
| 38 |
+
print("Continuing without LoRA functionality.")
|
| 39 |
+
lora_loaded = False
|
| 40 |
+
|
| 41 |
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
MAX_IMAGE_SIZE = 1024
|
| 43 |
|
|
|
|
| 58 |
|
| 59 |
return filepath
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Function to ensure "nsfw" and "[trigger]" are in the prompt
|
| 62 |
def process_prompt(prompt):
|
| 63 |
# Add "nsfw" prefix if not already present
|
|
|
|
| 92 |
seed = random.randint(0, MAX_SEED)
|
| 93 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 94 |
|
|
|
|
|
|
|
| 95 |
try:
|
| 96 |
+
# Try with cross_attention_kwargs if LoRA was loaded successfully
|
| 97 |
+
if lora_loaded:
|
| 98 |
+
image = pipeline(
|
| 99 |
+
prompt=processed_prompt,
|
| 100 |
+
guidance_scale=guidance_scale,
|
| 101 |
+
num_inference_steps=num_inference_steps,
|
| 102 |
+
width=width,
|
| 103 |
+
height=height,
|
| 104 |
+
generator=generator,
|
| 105 |
+
cross_attention_kwargs={"scale": lora_scale}
|
| 106 |
+
).images[0]
|
| 107 |
+
else:
|
| 108 |
+
# Fall back to standard generation if LoRA wasn't loaded
|
| 109 |
+
image = pipeline(
|
| 110 |
+
prompt=processed_prompt,
|
| 111 |
+
guidance_scale=guidance_scale,
|
| 112 |
+
num_inference_steps=num_inference_steps,
|
| 113 |
+
width=width,
|
| 114 |
+
height=height,
|
| 115 |
+
generator=generator,
|
| 116 |
+
).images[0]
|
| 117 |
except Exception as e:
|
| 118 |
+
print(f"Error during inference with cross_attention_kwargs: {e}")
|
| 119 |
+
# Fall back to standard generation without LoRA parameters
|
| 120 |
image = pipeline(
|
| 121 |
prompt=processed_prompt,
|
| 122 |
guidance_scale=guidance_scale,
|
|
|
|
| 124 |
width=width,
|
| 125 |
height=height,
|
| 126 |
generator=generator,
|
|
|
|
| 127 |
).images[0]
|
| 128 |
|
| 129 |
# Save the generated image
|
| 130 |
filepath = save_generated_image(image, processed_prompt)
|
| 131 |
|
| 132 |
+
# Return the image, seed, and processed prompt
|
| 133 |
+
return image, seed, processed_prompt
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
examples = [
|
| 136 |
+
"A young couple, their bodies glistening with sweat, make love in the rain, the woman"
|
| 137 |
+
]
|
| 138 |
|
| 139 |
# Brighter custom CSS with vibrant colors
|
| 140 |
custom_css = """
|
|
|
|
| 177 |
transform: translateY(-2px);
|
| 178 |
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
| 179 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
"""
|
| 181 |
|
| 182 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
| 183 |
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
|
| 184 |
|
| 185 |
+
# Main generation interface
|
| 186 |
+
with gr.Column(elem_id="col-container"):
|
| 187 |
+
with gr.Row():
|
| 188 |
+
prompt = gr.Text(
|
| 189 |
+
label="Prompt",
|
| 190 |
+
show_label=False,
|
| 191 |
+
max_lines=1,
|
| 192 |
+
placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)",
|
| 193 |
+
container=False,
|
| 194 |
+
)
|
| 195 |
+
run_button = gr.Button("Generate", variant="primary", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
result = gr.Image(label="Result", show_label=False)
|
| 198 |
+
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 201 |
+
seed = gr.Slider(
|
| 202 |
+
label="Seed",
|
| 203 |
+
minimum=0,
|
| 204 |
+
maximum=MAX_SEED,
|
| 205 |
+
step=1,
|
| 206 |
+
value=42,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 209 |
|
| 210 |
+
with gr.Row():
|
| 211 |
+
width = gr.Slider(
|
| 212 |
+
label="Width",
|
| 213 |
+
minimum=256,
|
| 214 |
+
maximum=MAX_IMAGE_SIZE,
|
| 215 |
+
step=32,
|
| 216 |
+
value=1024,
|
| 217 |
+
)
|
| 218 |
+
height = gr.Slider(
|
| 219 |
+
label="Height",
|
| 220 |
+
minimum=256,
|
| 221 |
+
maximum=MAX_IMAGE_SIZE,
|
| 222 |
+
step=32,
|
| 223 |
+
value=768,
|
| 224 |
+
)
|
| 225 |
|
| 226 |
+
with gr.Row():
|
| 227 |
+
guidance_scale = gr.Slider(
|
| 228 |
+
label="Guidance scale",
|
| 229 |
+
minimum=0.0,
|
| 230 |
+
maximum=10.0,
|
| 231 |
+
step=0.1,
|
| 232 |
+
value=3.5,
|
| 233 |
+
)
|
| 234 |
+
num_inference_steps = gr.Slider(
|
| 235 |
+
label="Number of inference steps",
|
| 236 |
+
minimum=1,
|
| 237 |
+
maximum=50,
|
| 238 |
+
step=1,
|
| 239 |
+
value=30,
|
| 240 |
+
)
|
| 241 |
+
lora_scale = gr.Slider(
|
| 242 |
+
label="LoRA scale",
|
| 243 |
+
minimum=0.0,
|
| 244 |
+
maximum=1.0,
|
| 245 |
+
step=0.1,
|
| 246 |
+
value=1.0,
|
| 247 |
+
)
|
| 248 |
|
| 249 |
+
gr.Examples(
|
| 250 |
+
examples=examples,
|
| 251 |
+
inputs=[prompt],
|
| 252 |
+
outputs=[result, seed, processed_prompt_display],
|
| 253 |
+
)
|
| 254 |
|
| 255 |
gr.on(
|
| 256 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 265 |
num_inference_steps,
|
| 266 |
lora_scale,
|
| 267 |
],
|
| 268 |
+
outputs=[result, seed, processed_prompt_display],
|
| 269 |
)
|
| 270 |
|
| 271 |
demo.queue()
|