Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ import threading
|
|
| 20 |
import os
|
| 21 |
|
| 22 |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
| 23 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:
|
| 24 |
|
| 25 |
# ๋ก๊น
์ค์
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -33,18 +33,19 @@ class VideoGenerationConfig:
|
|
| 33 |
lora_repo_id: str = "Kijai/WanVideo_comfy"
|
| 34 |
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 35 |
mod_value: int = 32
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
slider_min_h: int = 128
|
| 40 |
-
slider_max_h: int =
|
| 41 |
slider_min_w: int = 128
|
| 42 |
-
slider_max_w: int =
|
| 43 |
fixed_fps: int = 24
|
| 44 |
min_frames: int = 8
|
| 45 |
-
max_frames: int =
|
| 46 |
-
default_prompt: str = "make this image come alive, cinematic motion
|
| 47 |
-
default_negative_prompt: str = "static, blurred, low quality
|
| 48 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์
|
| 49 |
enable_model_cpu_offload: bool = True
|
| 50 |
enable_vae_slicing: bool = True
|
|
@@ -63,7 +64,8 @@ class VideoGenerationConfig:
|
|
| 63 |
config = VideoGenerationConfig()
|
| 64 |
MAX_SEED = np.iinfo(np.int32).max
|
| 65 |
|
| 66 |
-
# ๊ธ๋ก๋ฒ
|
|
|
|
| 67 |
generation_lock = threading.Lock()
|
| 68 |
|
| 69 |
# ์ฑ๋ฅ ์ธก์ ๋ฐ์ฝ๋ ์ดํฐ
|
|
@@ -78,175 +80,19 @@ def measure_time(func):
|
|
| 78 |
|
| 79 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์
|
| 80 |
def clear_gpu_memory():
|
| 81 |
-
"""
|
| 82 |
-
|
| 83 |
-
if hasattr(spaces, 'GPU'):
|
| 84 |
-
# Zero GPU ํ๊ฒฝ์์๋ @spaces.GPU ๋ด์์๋ง GPU ์์
์ํ
|
| 85 |
-
gc.collect()
|
| 86 |
-
return
|
| 87 |
-
|
| 88 |
if torch.cuda.is_available():
|
| 89 |
try:
|
| 90 |
torch.cuda.empty_cache()
|
| 91 |
-
torch.cuda.
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ํ ๋ก๊น
|
| 95 |
-
allocated = torch.cuda.memory_allocated() / 1024**3
|
| 96 |
-
reserved = torch.cuda.memory_reserved() / 1024**3
|
| 97 |
-
logger.info(f"GPU Memory - Allocated: {allocated:.2f}GB, Reserved: {reserved:.2f}GB")
|
| 98 |
-
except Exception as e:
|
| 99 |
-
logger.warning(f"GPU memory clear failed: {e}")
|
| 100 |
-
gc.collect()
|
| 101 |
-
|
| 102 |
-
# ๋ชจ๋ธ ๊ด๋ฆฌ์ (์ฑ๊ธํค ํจํด)
|
| 103 |
-
class ModelManager:
|
| 104 |
-
_instance = None
|
| 105 |
-
_lock = threading.Lock()
|
| 106 |
-
|
| 107 |
-
def __new__(cls):
|
| 108 |
-
if cls._instance is None:
|
| 109 |
-
with cls._lock:
|
| 110 |
-
if cls._instance is None:
|
| 111 |
-
cls._instance = super().__new__(cls)
|
| 112 |
-
return cls._instance
|
| 113 |
-
|
| 114 |
-
def __init__(self):
|
| 115 |
-
if not hasattr(self, '_initialized'):
|
| 116 |
-
self._pipe = None
|
| 117 |
-
self._is_loaded = False
|
| 118 |
-
self._initialized = True
|
| 119 |
-
|
| 120 |
-
@property
|
| 121 |
-
def pipe(self):
|
| 122 |
-
if not self._is_loaded:
|
| 123 |
-
self._load_model()
|
| 124 |
-
return self._pipe
|
| 125 |
-
|
| 126 |
-
@measure_time
|
| 127 |
-
def _load_model(self):
|
| 128 |
-
"""๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ๋ชจ๋ธ ๋ก๋ฉ"""
|
| 129 |
-
with self._lock:
|
| 130 |
-
if self._is_loaded:
|
| 131 |
-
return
|
| 132 |
-
|
| 133 |
-
try:
|
| 134 |
-
logger.info("Loading model with memory optimizations...")
|
| 135 |
-
clear_gpu_memory()
|
| 136 |
-
|
| 137 |
-
# ๋ชจ๋ธ ์ปดํฌ๋ํธ ๋ก๋ (๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ) - autocast ์์
|
| 138 |
-
if torch.cuda.is_available() and not hasattr(spaces, 'GPU'):
|
| 139 |
-
# ์ผ๋ฐ GPU ํ๊ฒฝ
|
| 140 |
-
with torch.amp.autocast('cuda', enabled=False): # ์์ ๋ ๋ถ๋ถ
|
| 141 |
-
image_encoder = CLIPVisionModel.from_pretrained(
|
| 142 |
-
config.model_id,
|
| 143 |
-
subfolder="image_encoder",
|
| 144 |
-
torch_dtype=torch.float16,
|
| 145 |
-
low_cpu_mem_usage=True
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
vae = AutoencoderKLWan.from_pretrained(
|
| 149 |
-
config.model_id,
|
| 150 |
-
subfolder="vae",
|
| 151 |
-
torch_dtype=torch.float16,
|
| 152 |
-
low_cpu_mem_usage=True
|
| 153 |
-
)
|
| 154 |
-
else:
|
| 155 |
-
# CPU ํ๊ฒฝ ๋๋ Zero GPU ํ๊ฒฝ
|
| 156 |
-
image_encoder = CLIPVisionModel.from_pretrained(
|
| 157 |
-
config.model_id,
|
| 158 |
-
subfolder="image_encoder",
|
| 159 |
-
torch_dtype=torch.float16 if hasattr(spaces, 'GPU') else torch.float32,
|
| 160 |
-
low_cpu_mem_usage=True
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
vae = AutoencoderKLWan.from_pretrained(
|
| 164 |
-
config.model_id,
|
| 165 |
-
subfolder="vae",
|
| 166 |
-
torch_dtype=torch.float16 if hasattr(spaces, 'GPU') else torch.float32,
|
| 167 |
-
low_cpu_mem_usage=True
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
self._pipe = WanImageToVideoPipeline.from_pretrained(
|
| 171 |
-
config.model_id,
|
| 172 |
-
vae=vae,
|
| 173 |
-
image_encoder=image_encoder,
|
| 174 |
-
torch_dtype=torch.bfloat16 if (torch.cuda.is_available() or hasattr(spaces, 'GPU')) else torch.float32,
|
| 175 |
-
low_cpu_mem_usage=True,
|
| 176 |
-
use_safetensors=True
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
# ์ค์ผ์ค๋ฌ ์ค์
|
| 180 |
-
self._pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 181 |
-
self._pipe.scheduler.config, flow_shift=8.0
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
# LoRA ๋ก๋
|
| 185 |
-
try:
|
| 186 |
-
causvid_path = hf_hub_download(
|
| 187 |
-
repo_id=config.lora_repo_id, filename=config.lora_filename
|
| 188 |
-
)
|
| 189 |
-
self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
| 190 |
-
self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
| 191 |
-
self._pipe.fuse_lora()
|
| 192 |
-
logger.info("LoRA weights loaded successfully")
|
| 193 |
-
except Exception as e:
|
| 194 |
-
logger.warning(f"Failed to load LoRA weights: {e}")
|
| 195 |
-
|
| 196 |
-
# GPU ์ต์ ํ ์ค์
|
| 197 |
-
if hasattr(spaces, 'GPU'): # Zero GPU ํ๊ฒฝ
|
| 198 |
-
# Zero GPU ํ๊ฒฝ์์๋ ์๋์ผ๋ก ์ฒ๋ฆฌ๋จ
|
| 199 |
-
logger.info("Model loaded for Zero GPU environment")
|
| 200 |
-
elif config.enable_model_cpu_offload and torch.cuda.is_available():
|
| 201 |
-
self._pipe.enable_model_cpu_offload()
|
| 202 |
-
logger.info("CPU offload enabled")
|
| 203 |
-
elif torch.cuda.is_available():
|
| 204 |
-
self._pipe.to("cuda")
|
| 205 |
-
logger.info("Model moved to CUDA")
|
| 206 |
-
else:
|
| 207 |
-
logger.info("Running on CPU")
|
| 208 |
-
|
| 209 |
-
if config.enable_vae_slicing:
|
| 210 |
-
self._pipe.enable_vae_slicing()
|
| 211 |
-
|
| 212 |
-
if config.enable_vae_tiling:
|
| 213 |
-
self._pipe.enable_vae_tiling()
|
| 214 |
-
|
| 215 |
-
# xFormers ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ attention ํ์ฑํ (๊ฐ๋ฅํ ๊ฒฝ์ฐ)
|
| 216 |
-
try:
|
| 217 |
-
self._pipe.enable_xformers_memory_efficient_attention()
|
| 218 |
-
logger.info("xFormers memory efficient attention enabled")
|
| 219 |
-
except:
|
| 220 |
-
logger.info("xFormers not available, using default attention")
|
| 221 |
-
|
| 222 |
-
self._is_loaded = True
|
| 223 |
-
logger.info("Model loaded successfully with optimizations")
|
| 224 |
-
clear_gpu_memory()
|
| 225 |
-
|
| 226 |
-
except Exception as e:
|
| 227 |
-
logger.error(f"Error loading model: {e}")
|
| 228 |
-
self._is_loaded = False
|
| 229 |
-
clear_gpu_memory()
|
| 230 |
-
raise
|
| 231 |
-
|
| 232 |
-
def unload_model(self):
|
| 233 |
-
"""๋ชจ๋ธ ์ธ๋ก๋ ๋ฐ ๋ฉ๋ชจ๋ฆฌ ํด์ """
|
| 234 |
-
with self._lock:
|
| 235 |
-
if self._pipe is not None:
|
| 236 |
-
del self._pipe
|
| 237 |
-
self._pipe = None
|
| 238 |
-
self._is_loaded = False
|
| 239 |
-
clear_gpu_memory()
|
| 240 |
-
logger.info("Model unloaded and memory cleared")
|
| 241 |
-
|
| 242 |
-
# ์ฑ๊ธํค ์ธ์คํด์ค
|
| 243 |
-
model_manager = ModelManager()
|
| 244 |
|
| 245 |
# ๋น๋์ค ์์ฑ๊ธฐ ํด๋์ค
|
| 246 |
class VideoGenerator:
|
| 247 |
-
def __init__(self, config: VideoGenerationConfig
|
| 248 |
self.config = config
|
| 249 |
-
self.model_manager = model_manager
|
| 250 |
|
| 251 |
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
|
| 252 |
orig_w, orig_h = image.size
|
|
@@ -255,11 +101,8 @@ class VideoGenerator:
|
|
| 255 |
|
| 256 |
aspect_ratio = orig_h / orig_w
|
| 257 |
|
| 258 |
-
# Zero GPU
|
| 259 |
-
|
| 260 |
-
max_area = 640.0 * 640.0 # 409,600 pixels
|
| 261 |
-
else:
|
| 262 |
-
max_area = self.config.max_area
|
| 263 |
|
| 264 |
calc_h = round(np.sqrt(max_area * aspect_ratio))
|
| 265 |
calc_w = round(np.sqrt(max_area / aspect_ratio))
|
|
@@ -267,16 +110,13 @@ class VideoGenerator:
|
|
| 267 |
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
|
| 268 |
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
|
| 269 |
|
| 270 |
-
#
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
(self.config.slider_max_h // self.config.mod_value) * self.config.mod_value))
|
| 278 |
-
new_w = int(np.clip(calc_w, self.config.slider_min_w,
|
| 279 |
-
(self.config.slider_max_w // self.config.mod_value) * self.config.mod_value))
|
| 280 |
|
| 281 |
return new_h, new_w
|
| 282 |
|
|
@@ -288,43 +128,26 @@ class VideoGenerator:
|
|
| 288 |
if not prompt or len(prompt.strip()) == 0:
|
| 289 |
return False, "โ๏ธ Please provide a prompt"
|
| 290 |
|
| 291 |
-
if len(prompt) >
|
| 292 |
-
return False, "โ ๏ธ Prompt is too long (max
|
| 293 |
|
| 294 |
-
#
|
| 295 |
-
|
| 296 |
-
|
| 297 |
|
| 298 |
-
if duration
|
| 299 |
-
return False,
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
if duration > 2.5: # Zero GPU์์๋ 2.5์ด๋ก ์ ํ
|
| 307 |
-
return False, "โฑ๏ธ In Zero GPU environment, duration is limited to 2.5s for stability"
|
| 308 |
-
# ํฝ์
์ ๊ธฐ๋ฐ ์ ํ (640x640 = 409,600 ํฝ์
)
|
| 309 |
-
max_pixels = 640 * 640
|
| 310 |
-
if height * width > max_pixels:
|
| 311 |
-
return False, f"๐ In Zero GPU environment, total pixels limited to {max_pixels:,} (e.g., 640ร640, 512ร832)"
|
| 312 |
-
if height > 832 or width > 832: # ํ ๋ณ์ ์ต๋ ๊ธธ์ด
|
| 313 |
-
return False, "๐ In Zero GPU environment, maximum dimension is 832 pixels"
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
try:
|
| 318 |
-
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
|
| 319 |
-
required_memory = (height * width * 3 * 8 * duration * self.config.fixed_fps) / (1024**3)
|
| 320 |
-
if free_memory < required_memory * 2:
|
| 321 |
-
clear_gpu_memory()
|
| 322 |
-
# ์ฌํ์ธ
|
| 323 |
-
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
|
| 324 |
-
if free_memory < required_memory * 1.5:
|
| 325 |
-
return False, "โ ๏ธ Not enough GPU memory. Try smaller dimensions or shorter duration."
|
| 326 |
-
except Exception as e:
|
| 327 |
-
logger.warning(f"GPU memory check failed: {e}")
|
| 328 |
|
| 329 |
return True, None
|
| 330 |
|
|
@@ -334,7 +157,7 @@ class VideoGenerator:
|
|
| 334 |
hash_obj = hashlib.md5(unique_str.encode())
|
| 335 |
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
|
| 336 |
|
| 337 |
-
video_generator = VideoGenerator(config
|
| 338 |
|
| 339 |
# Gradio ํจ์๋ค
|
| 340 |
def handle_image_upload(image):
|
|
@@ -355,53 +178,40 @@ def handle_image_upload(image):
|
|
| 355 |
|
| 356 |
def get_duration(input_image, prompt, height, width, negative_prompt,
|
| 357 |
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
|
| 358 |
-
# Zero GPU
|
| 359 |
-
base_duration =
|
| 360 |
-
|
| 361 |
-
# ๋จ๊ณ๋ณ ์ถ๊ฐ ์๊ฐ
|
| 362 |
-
if steps > 8:
|
| 363 |
-
base_duration += 30
|
| 364 |
-
elif steps > 4:
|
| 365 |
-
base_duration += 15
|
| 366 |
|
| 367 |
-
#
|
| 368 |
-
|
|
|
|
| 369 |
base_duration += 20
|
| 370 |
-
elif
|
| 371 |
base_duration += 10
|
| 372 |
|
| 373 |
-
#
|
| 374 |
-
|
| 375 |
-
if pixels > 400000: # 640x640 ๊ทผ์ฒ
|
| 376 |
-
base_duration += 20
|
| 377 |
-
elif pixels > 250000: # 512x512 ๊ทผ์ฒ
|
| 378 |
base_duration += 10
|
| 379 |
|
| 380 |
-
# Zero GPU
|
| 381 |
-
return min(base_duration,
|
| 382 |
|
| 383 |
@spaces.GPU(duration=get_duration)
|
| 384 |
@measure_time
|
| 385 |
def generate_video(input_image, prompt, height, width,
|
| 386 |
negative_prompt=config.default_negative_prompt,
|
| 387 |
-
duration_seconds=1.
|
| 388 |
seed=42, randomize_seed=False,
|
| 389 |
progress=gr.Progress(track_tqdm=True)):
|
| 390 |
|
|
|
|
|
|
|
| 391 |
# ๋์ ์คํ ๋ฐฉ์ง
|
| 392 |
if not generation_lock.acquire(blocking=False):
|
| 393 |
raise gr.Error("โณ Another video is being generated. Please wait...")
|
| 394 |
|
| 395 |
try:
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
logger.info("GPU initialized in Zero GPU environment")
|
| 399 |
-
|
| 400 |
-
progress(0.1, desc="๐ Validating inputs...")
|
| 401 |
-
|
| 402 |
-
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ๊ฒ์ฆ
|
| 403 |
-
if hasattr(spaces, 'GPU'):
|
| 404 |
-
logger.info(f"Zero GPU environment detected. Duration: {duration_seconds}s, Resolution: {height}x{width}, Pixels: {height*width:,}")
|
| 405 |
|
| 406 |
# ์
๋ ฅ ๊ฒ์ฆ
|
| 407 |
is_valid, error_msg = video_generator.validate_inputs(
|
|
@@ -413,73 +223,117 @@ def generate_video(input_image, prompt, height, width,
|
|
| 413 |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 414 |
clear_gpu_memory()
|
| 415 |
|
| 416 |
-
progress(0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
|
| 418 |
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
|
| 419 |
|
| 420 |
-
# ํ๋ ์ ์ ๊ณ์ฐ (
|
| 421 |
-
max_allowed_frames = int(2.5 * config.fixed_fps) if hasattr(spaces, 'GPU') else config.max_frames
|
| 422 |
num_frames = min(
|
| 423 |
int(round(duration_seconds * config.fixed_fps)),
|
| 424 |
-
|
| 425 |
)
|
| 426 |
-
num_frames =
|
| 427 |
|
| 428 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 429 |
|
| 430 |
-
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ
|
| 431 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
| 432 |
|
| 433 |
-
progress(0.
|
| 434 |
-
pipe = model_manager.pipe
|
| 435 |
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
except Exception as e:
|
| 460 |
-
logger.error(f"Generation error: {e}")
|
| 461 |
-
raise gr.Error(f"โ Generation failed: {str(e)}")
|
| 462 |
-
else:
|
| 463 |
-
# CPU ํ๊ฒฝ
|
| 464 |
-
with torch.inference_mode():
|
| 465 |
-
try:
|
| 466 |
-
output_frames_list = pipe(
|
| 467 |
-
image=resized_image,
|
| 468 |
-
prompt=prompt,
|
| 469 |
-
negative_prompt=negative_prompt,
|
| 470 |
-
height=target_h,
|
| 471 |
-
width=target_w,
|
| 472 |
-
num_frames=num_frames,
|
| 473 |
-
guidance_scale=float(guidance_scale),
|
| 474 |
-
num_inference_steps=int(steps),
|
| 475 |
-
generator=torch.Generator().manual_seed(current_seed),
|
| 476 |
-
return_dict=True
|
| 477 |
-
).frames[0]
|
| 478 |
-
except Exception as e:
|
| 479 |
-
logger.error(f"Generation error: {e}")
|
| 480 |
-
raise gr.Error(f"โ Generation failed: {str(e)}")
|
| 481 |
|
| 482 |
progress(0.9, desc="๐พ Saving video...")
|
|
|
|
|
|
|
| 483 |
filename = video_generator.generate_unique_filename(current_seed)
|
| 484 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 485 |
video_path = tmpfile.name
|
|
@@ -487,325 +341,173 @@ def generate_video(input_image, prompt, height, width,
|
|
| 487 |
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
|
| 488 |
|
| 489 |
progress(1.0, desc="โจ Complete!")
|
| 490 |
-
logger.info(f"Video generated
|
| 491 |
|
| 492 |
-
#
|
| 493 |
-
|
| 494 |
-
|
|
|
|
| 495 |
|
| 496 |
return video_path, current_seed
|
| 497 |
|
| 498 |
except gr.Error:
|
| 499 |
-
# Gradio ์๋ฌ๋ ๊ทธ๋๋ก ์ ๋ฌ
|
| 500 |
raise
|
| 501 |
except Exception as e:
|
| 502 |
logger.error(f"Unexpected error: {e}")
|
| 503 |
-
raise gr.Error(f"โ
|
| 504 |
|
| 505 |
finally:
|
| 506 |
-
# ํญ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฐ ๋ฝ ํด์
|
| 507 |
generation_lock.release()
|
| 508 |
-
|
| 509 |
-
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 510 |
-
if 'output_frames_list' in locals():
|
| 511 |
-
del output_frames_list
|
| 512 |
-
if 'resized_image' in locals():
|
| 513 |
-
del resized_image
|
| 514 |
-
|
| 515 |
clear_gpu_memory()
|
| 516 |
|
| 517 |
-
#
|
| 518 |
css = """
|
| 519 |
.container {
|
| 520 |
-
max-width:
|
| 521 |
margin: auto;
|
| 522 |
padding: 20px;
|
| 523 |
}
|
| 524 |
|
| 525 |
.header {
|
| 526 |
text-align: center;
|
| 527 |
-
margin-bottom:
|
| 528 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 529 |
-
padding:
|
| 530 |
-
border-radius:
|
| 531 |
color: white;
|
| 532 |
-
box-shadow: 0
|
| 533 |
-
position: relative;
|
| 534 |
-
overflow: hidden;
|
| 535 |
-
}
|
| 536 |
-
|
| 537 |
-
.header::before {
|
| 538 |
-
content: '';
|
| 539 |
-
position: absolute;
|
| 540 |
-
top: -50%;
|
| 541 |
-
left: -50%;
|
| 542 |
-
width: 200%;
|
| 543 |
-
height: 200%;
|
| 544 |
-
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
|
| 545 |
-
animation: pulse 4s ease-in-out infinite;
|
| 546 |
-
}
|
| 547 |
-
|
| 548 |
-
@keyframes pulse {
|
| 549 |
-
0%, 100% { transform: scale(1); opacity: 0.5; }
|
| 550 |
-
50% { transform: scale(1.1); opacity: 0.8; }
|
| 551 |
}
|
| 552 |
|
| 553 |
.header h1 {
|
| 554 |
-
font-size:
|
| 555 |
margin-bottom: 10px;
|
| 556 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
| 557 |
-
position: relative;
|
| 558 |
-
z-index: 1;
|
| 559 |
-
}
|
| 560 |
-
|
| 561 |
-
.header p {
|
| 562 |
-
font-size: 1.2em;
|
| 563 |
-
opacity: 0.95;
|
| 564 |
-
position: relative;
|
| 565 |
-
z-index: 1;
|
| 566 |
-
}
|
| 567 |
-
|
| 568 |
-
.gpu-status {
|
| 569 |
-
position: absolute;
|
| 570 |
-
top: 10px;
|
| 571 |
-
right: 10px;
|
| 572 |
-
background: rgba(0,0,0,0.3);
|
| 573 |
-
padding: 5px 15px;
|
| 574 |
-
border-radius: 20px;
|
| 575 |
-
font-size: 0.8em;
|
| 576 |
}
|
| 577 |
|
| 578 |
-
.
|
| 579 |
-
background:
|
| 580 |
-
border
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
.input-section {
|
| 587 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 588 |
-
padding: 25px;
|
| 589 |
-
border-radius: 15px;
|
| 590 |
-
margin-bottom: 20px;
|
| 591 |
}
|
| 592 |
|
| 593 |
.generate-btn {
|
| 594 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 595 |
color: white;
|
| 596 |
-
font-size: 1.
|
| 597 |
-
padding:
|
| 598 |
-
border-radius:
|
| 599 |
border: none;
|
| 600 |
cursor: pointer;
|
| 601 |
-
transition: all 0.3s ease;
|
| 602 |
-
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
|
| 603 |
width: 100%;
|
| 604 |
-
margin-top:
|
| 605 |
}
|
| 606 |
|
| 607 |
.generate-btn:hover {
|
| 608 |
transform: translateY(-2px);
|
| 609 |
-
box-shadow: 0
|
| 610 |
-
}
|
| 611 |
-
|
| 612 |
-
.generate-btn:active {
|
| 613 |
-
transform: translateY(0);
|
| 614 |
-
}
|
| 615 |
-
|
| 616 |
-
.video-output {
|
| 617 |
-
background: #f8f9fa;
|
| 618 |
-
padding: 20px;
|
| 619 |
-
border-radius: 15px;
|
| 620 |
-
text-align: center;
|
| 621 |
-
min-height: 400px;
|
| 622 |
-
display: flex;
|
| 623 |
-
align-items: center;
|
| 624 |
-
justify-content: center;
|
| 625 |
-
}
|
| 626 |
-
|
| 627 |
-
.accordion {
|
| 628 |
-
background: rgba(255, 255, 255, 0.7);
|
| 629 |
-
border-radius: 10px;
|
| 630 |
-
margin-top: 15px;
|
| 631 |
-
padding: 15px;
|
| 632 |
-
}
|
| 633 |
-
|
| 634 |
-
.slider-container {
|
| 635 |
-
background: rgba(255, 255, 255, 0.5);
|
| 636 |
-
padding: 15px;
|
| 637 |
-
border-radius: 10px;
|
| 638 |
-
margin: 10px 0;
|
| 639 |
-
}
|
| 640 |
-
|
| 641 |
-
body {
|
| 642 |
-
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
|
| 643 |
-
background-size: 400% 400%;
|
| 644 |
-
animation: gradient 15s ease infinite;
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
@keyframes gradient {
|
| 648 |
-
0% { background-position: 0% 50%; }
|
| 649 |
-
50% { background-position: 100% 50%; }
|
| 650 |
-
100% { background-position: 0% 50%; }
|
| 651 |
-
}
|
| 652 |
-
|
| 653 |
-
.warning-box {
|
| 654 |
-
background: rgba(255, 193, 7, 0.1);
|
| 655 |
-
border: 1px solid rgba(255, 193, 7, 0.3);
|
| 656 |
-
border-radius: 10px;
|
| 657 |
-
padding: 15px;
|
| 658 |
-
margin: 10px 0;
|
| 659 |
-
color: #856404;
|
| 660 |
-
font-size: 0.9em;
|
| 661 |
-
}
|
| 662 |
-
|
| 663 |
-
.info-box {
|
| 664 |
-
background: rgba(52, 152, 219, 0.1);
|
| 665 |
-
border: 1px solid rgba(52, 152, 219, 0.3);
|
| 666 |
-
border-radius: 10px;
|
| 667 |
-
padding: 15px;
|
| 668 |
-
margin: 10px 0;
|
| 669 |
-
color: #2c5282;
|
| 670 |
-
font-size: 0.9em;
|
| 671 |
-
}
|
| 672 |
-
|
| 673 |
-
.footer {
|
| 674 |
-
text-align: center;
|
| 675 |
-
margin-top: 30px;
|
| 676 |
-
color: #666;
|
| 677 |
-
font-size: 0.9em;
|
| 678 |
-
}
|
| 679 |
-
|
| 680 |
-
/* ๋ก๋ฉ ์ ๋๋ฉ์ด์
๊ฐ์ */
|
| 681 |
-
.progress-bar {
|
| 682 |
-
background: linear-gradient(90deg, #667eea 0%, #764ba2 50%, #667eea 100%);
|
| 683 |
-
background-size: 200% 100%;
|
| 684 |
-
animation: loading 1.5s ease-in-out infinite;
|
| 685 |
-
}
|
| 686 |
-
|
| 687 |
-
@keyframes loading {
|
| 688 |
-
0% { background-position: 0% 0%; }
|
| 689 |
-
100% { background-position: 200% 0%; }
|
| 690 |
}
|
| 691 |
"""
|
| 692 |
|
| 693 |
# Gradio UI
|
| 694 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 695 |
with gr.Column(elem_classes="container"):
|
| 696 |
-
# Header
|
| 697 |
gr.HTML("""
|
| 698 |
<div class="header">
|
| 699 |
-
<h1>๐ฌ AI Video
|
| 700 |
-
<p>Transform
|
| 701 |
-
<div class="gpu-status">๐ฅ๏ธ Zero GPU Optimized</div>
|
| 702 |
</div>
|
| 703 |
""")
|
| 704 |
|
| 705 |
-
#
|
| 706 |
gr.HTML("""
|
| 707 |
<div class="warning-box">
|
| 708 |
-
<strong
|
| 709 |
<ul style="margin: 5px 0; padding-left: 20px;">
|
| 710 |
-
<li>
|
| 711 |
-
<li>
|
| 712 |
-
<li>
|
| 713 |
-
<li>
|
| 714 |
-
<li>Wait between generations to avoid queue errors</li>
|
| 715 |
</ul>
|
| 716 |
</div>
|
| 717 |
""")
|
| 718 |
|
| 719 |
-
|
| 720 |
-
gr.HTML("""
|
| 721 |
-
<div class="info-box">
|
| 722 |
-
<strong>๐ฏ Quick Start Guide:</strong>
|
| 723 |
-
<ol style="margin: 5px 0; padding-left: 20px;">
|
| 724 |
-
<li>Upload your image - AI will calculate optimal dimensions</li>
|
| 725 |
-
<li>Enter a creative prompt or use the default</li>
|
| 726 |
-
<li>Adjust duration (1.5s recommended for best results)</li>
|
| 727 |
-
<li>Click Generate and wait ~60 seconds</li>
|
| 728 |
-
</ol>
|
| 729 |
-
</div>
|
| 730 |
-
""")
|
| 731 |
-
|
| 732 |
-
with gr.Row(elem_classes="main-content"):
|
| 733 |
with gr.Column(scale=1):
|
| 734 |
-
gr.
|
|
|
|
|
|
|
|
|
|
| 735 |
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
prompt_input = gr.Textbox(
|
| 744 |
-
label="โจ Animation Prompt",
|
| 745 |
-
value=config.default_prompt,
|
| 746 |
-
placeholder="Describe how you want your image to move...",
|
| 747 |
-
lines=2
|
| 748 |
-
)
|
| 749 |
-
|
| 750 |
-
duration_input = gr.Slider(
|
| 751 |
-
minimum=round(config.min_duration, 1),
|
| 752 |
-
maximum=2.5 if hasattr(spaces, 'GPU') else round(config.max_duration, 1), # Zero GPU ํ๊ฒฝ ์ ํ
|
| 753 |
-
step=0.1,
|
| 754 |
-
value=1.5, # ์์ ํ ๊ธฐ๋ณธ๊ฐ
|
| 755 |
-
label="โฑ๏ธ Video Duration (seconds) - Limited to 2.5s in Zero GPU",
|
| 756 |
-
elem_classes="slider-container"
|
| 757 |
-
)
|
| 758 |
|
| 759 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
negative_prompt = gr.Textbox(
|
| 761 |
-
label="
|
| 762 |
value=config.default_negative_prompt,
|
| 763 |
-
lines=
|
| 764 |
)
|
| 765 |
|
| 766 |
-
with gr.Row():
|
| 767 |
-
seed = gr.Slider(
|
| 768 |
-
minimum=0,
|
| 769 |
-
maximum=MAX_SEED,
|
| 770 |
-
step=1,
|
| 771 |
-
value=42,
|
| 772 |
-
label="๐ฒ Seed"
|
| 773 |
-
)
|
| 774 |
-
randomize_seed = gr.Checkbox(
|
| 775 |
-
label="๐ Randomize",
|
| 776 |
-
value=True
|
| 777 |
-
)
|
| 778 |
-
|
| 779 |
with gr.Row():
|
| 780 |
height_slider = gr.Slider(
|
| 781 |
-
minimum=
|
| 782 |
-
maximum=
|
| 783 |
-
step=
|
| 784 |
-
value=
|
| 785 |
-
label="
|
| 786 |
)
|
| 787 |
width_slider = gr.Slider(
|
| 788 |
-
minimum=
|
| 789 |
-
maximum=
|
| 790 |
-
step=
|
| 791 |
-
value=
|
| 792 |
-
label="
|
| 793 |
)
|
| 794 |
|
| 795 |
steps_slider = gr.Slider(
|
| 796 |
minimum=1,
|
| 797 |
-
maximum=
|
| 798 |
step=1,
|
| 799 |
-
value=
|
| 800 |
-
label="
|
| 801 |
)
|
| 802 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 803 |
guidance_scale = gr.Slider(
|
| 804 |
minimum=0.0,
|
| 805 |
-
maximum=
|
| 806 |
step=0.5,
|
| 807 |
value=1.0,
|
| 808 |
-
label="
|
| 809 |
visible=False
|
| 810 |
)
|
| 811 |
|
|
@@ -816,73 +518,37 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 816 |
)
|
| 817 |
|
| 818 |
with gr.Column(scale=1):
|
| 819 |
-
gr.Markdown("### ๐ฅ Generated Video")
|
| 820 |
video_output = gr.Video(
|
| 821 |
-
label="",
|
| 822 |
-
autoplay=True
|
| 823 |
-
elem_classes="video-output"
|
| 824 |
)
|
| 825 |
|
| 826 |
-
gr.
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
|
|
|
|
|
|
| 830 |
""")
|
| 831 |
|
| 832 |
-
#
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
gr.HTML("""
|
| 849 |
-
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;">
|
| 850 |
-
<p style="margin: 0; color: #666;">
|
| 851 |
-
<strong style="color: #667eea;">Enhanced with:</strong>
|
| 852 |
-
๐ก๏ธ GPU Crash Protection โข โก Memory Optimization โข ๐จ Modern UI โข ๐ง Clean Architecture
|
| 853 |
-
</p>
|
| 854 |
-
</div>
|
| 855 |
-
""")
|
| 856 |
-
|
| 857 |
-
# Event handlers
|
| 858 |
-
input_image.upload(
|
| 859 |
-
fn=handle_image_upload,
|
| 860 |
-
inputs=[input_image],
|
| 861 |
-
outputs=[height_slider, width_slider]
|
| 862 |
-
)
|
| 863 |
-
|
| 864 |
-
input_image.clear(
|
| 865 |
-
fn=handle_image_upload,
|
| 866 |
-
inputs=[input_image],
|
| 867 |
-
outputs=[height_slider, width_slider]
|
| 868 |
-
)
|
| 869 |
-
|
| 870 |
-
generate_btn.click(
|
| 871 |
-
fn=generate_video,
|
| 872 |
-
inputs=[
|
| 873 |
-
input_image, prompt_input, height_slider, width_slider,
|
| 874 |
-
negative_prompt, duration_input, guidance_scale,
|
| 875 |
-
steps_slider, seed, randomize_seed
|
| 876 |
-
],
|
| 877 |
-
outputs=[video_output, seed]
|
| 878 |
-
)
|
| 879 |
|
| 880 |
if __name__ == "__main__":
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
logger.info("Running in Zero GPU environment")
|
| 884 |
-
else:
|
| 885 |
-
logger.info("Running in standard environment")
|
| 886 |
-
|
| 887 |
-
# ์ฑ ์คํ
|
| 888 |
demo.launch()
|
|
|
|
| 20 |
import os
|
| 21 |
|
| 22 |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
| 23 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256' # ๋ ์์ ์ฒญํฌ ์ฌ์ฉ
|
| 24 |
|
| 25 |
# ๋ก๊น
์ค์
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 33 |
lora_repo_id: str = "Kijai/WanVideo_comfy"
|
| 34 |
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 35 |
mod_value: int = 32
|
| 36 |
+
# Zero GPU๋ฅผ ์ํ ๋ณด์์ ์ธ ๊ธฐ๋ณธ๊ฐ
|
| 37 |
+
default_height: int = 384
|
| 38 |
+
default_width: int = 384
|
| 39 |
+
max_area: float = 384.0 * 384.0 # Zero GPU์ ์ต์ ํ
|
| 40 |
slider_min_h: int = 128
|
| 41 |
+
slider_max_h: int = 640 # ๋ ๋ฎ์ ์ต๋๊ฐ
|
| 42 |
slider_min_w: int = 128
|
| 43 |
+
slider_max_w: int = 640 # ๋ ๋ฎ์ ์ต๋๊ฐ
|
| 44 |
fixed_fps: int = 24
|
| 45 |
min_frames: int = 8
|
| 46 |
+
max_frames: int = 36 # ๋ ๋ฎ์ ์ต๋ ํ๋ ์
|
| 47 |
+
default_prompt: str = "make this image come alive, cinematic motion"
|
| 48 |
+
default_negative_prompt: str = "static, blurred, low quality"
|
| 49 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์
|
| 50 |
enable_model_cpu_offload: bool = True
|
| 51 |
enable_vae_slicing: bool = True
|
|
|
|
| 64 |
config = VideoGenerationConfig()
|
| 65 |
MAX_SEED = np.iinfo(np.int32).max
|
| 66 |
|
| 67 |
+
# ๊ธ๋ก๋ฒ ๋ณ์
|
| 68 |
+
pipe = None
|
| 69 |
generation_lock = threading.Lock()
|
| 70 |
|
| 71 |
# ์ฑ๋ฅ ์ธก์ ๋ฐ์ฝ๋ ์ดํฐ
|
|
|
|
| 80 |
|
| 81 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์
|
| 82 |
def clear_gpu_memory():
|
| 83 |
+
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ (Zero GPU ์์ )"""
|
| 84 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
if torch.cuda.is_available():
|
| 86 |
try:
|
| 87 |
torch.cuda.empty_cache()
|
| 88 |
+
torch.cuda.synchronize()
|
| 89 |
+
except:
|
| 90 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# ๋น๋์ค ์์ฑ๊ธฐ ํด๋์ค
|
| 93 |
class VideoGenerator:
|
| 94 |
+
def __init__(self, config: VideoGenerationConfig):
|
| 95 |
self.config = config
|
|
|
|
| 96 |
|
| 97 |
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
|
| 98 |
orig_w, orig_h = image.size
|
|
|
|
| 101 |
|
| 102 |
aspect_ratio = orig_h / orig_w
|
| 103 |
|
| 104 |
+
# Zero GPU์ ์ต์ ํ๋ ์์ ํด์๋
|
| 105 |
+
max_area = 384.0 * 384.0
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
calc_h = round(np.sqrt(max_area * aspect_ratio))
|
| 108 |
calc_w = round(np.sqrt(max_area / aspect_ratio))
|
|
|
|
| 110 |
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
|
| 111 |
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
|
| 112 |
|
| 113 |
+
# ์ต๋ 640์ผ๋ก ์ ํ
|
| 114 |
+
new_h = int(np.clip(calc_h, self.config.slider_min_h, 640))
|
| 115 |
+
new_w = int(np.clip(calc_w, self.config.slider_min_w, 640))
|
| 116 |
+
|
| 117 |
+
# mod_value์ ๋ง์ถค
|
| 118 |
+
new_h = (new_h // self.config.mod_value) * self.config.mod_value
|
| 119 |
+
new_w = (new_w // self.config.mod_value) * self.config.mod_value
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
return new_h, new_w
|
| 122 |
|
|
|
|
| 128 |
if not prompt or len(prompt.strip()) == 0:
|
| 129 |
return False, "โ๏ธ Please provide a prompt"
|
| 130 |
|
| 131 |
+
if len(prompt) > 300: # ๋ ์งง์ ํ๋กฌํํธ ์ ํ
|
| 132 |
+
return False, "โ ๏ธ Prompt is too long (max 300 characters)"
|
| 133 |
|
| 134 |
+
# Zero GPU์ ์ต์ ํ๋ ์ ํ
|
| 135 |
+
if duration < 0.3:
|
| 136 |
+
return False, "โฑ๏ธ Duration too short (min 0.3s)"
|
| 137 |
|
| 138 |
+
if duration > 1.5:
|
| 139 |
+
return False, "โฑ๏ธ Duration too long (max 1.5s for stability)"
|
| 140 |
|
| 141 |
+
# ํฝ์
์ ์ ํ (384x384 = 147,456 ํฝ์
)
|
| 142 |
+
max_pixels = 384 * 384
|
| 143 |
+
if height * width > max_pixels:
|
| 144 |
+
return False, f"๐ Total pixels limited to {max_pixels:,} (e.g., 384ร384)"
|
| 145 |
|
| 146 |
+
if height > 640 or width > 640:
|
| 147 |
+
return False, "๐ Maximum dimension is 640 pixels"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
if steps > 6:
|
| 150 |
+
return False, "๐ง Maximum 6 steps in Zero GPU environment"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
return True, None
|
| 153 |
|
|
|
|
| 157 |
hash_obj = hashlib.md5(unique_str.encode())
|
| 158 |
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
|
| 159 |
|
| 160 |
+
video_generator = VideoGenerator(config)
|
| 161 |
|
| 162 |
# Gradio ํจ์๋ค
|
| 163 |
def handle_image_upload(image):
|
|
|
|
| 178 |
|
| 179 |
def get_duration(input_image, prompt, height, width, negative_prompt,
|
| 180 |
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
|
| 181 |
+
# Zero GPU ํ๊ฒฝ์์ ๋งค์ฐ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น
|
| 182 |
+
base_duration = 40 # ๊ธฐ๋ณธ 40์ด
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
# ํฝ์
์์ ๋ฐ๋ฅธ ์ถ๊ฐ ์๊ฐ
|
| 185 |
+
pixels = height * width
|
| 186 |
+
if pixels > 200000: # 448x448 ์ด์
|
| 187 |
base_duration += 20
|
| 188 |
+
elif pixels > 147456: # 384x384 ์ด์
|
| 189 |
base_duration += 10
|
| 190 |
|
| 191 |
+
# ์คํ
์์ ๋ฐ๋ฅธ ์ถ๊ฐ ์๊ฐ
|
| 192 |
+
if steps > 4:
|
|
|
|
|
|
|
|
|
|
| 193 |
base_duration += 10
|
| 194 |
|
| 195 |
+
# ์ต๋ 70์ด๋ก ์ ํ (Zero GPU์ ์์ ํ ํ๊ณ)
|
| 196 |
+
return min(base_duration, 70)
|
| 197 |
|
| 198 |
@spaces.GPU(duration=get_duration)
|
| 199 |
@measure_time
|
| 200 |
def generate_video(input_image, prompt, height, width,
|
| 201 |
negative_prompt=config.default_negative_prompt,
|
| 202 |
+
duration_seconds=1.0, guidance_scale=1, steps=3,
|
| 203 |
seed=42, randomize_seed=False,
|
| 204 |
progress=gr.Progress(track_tqdm=True)):
|
| 205 |
|
| 206 |
+
global pipe
|
| 207 |
+
|
| 208 |
# ๋์ ์คํ ๋ฐฉ์ง
|
| 209 |
if not generation_lock.acquire(blocking=False):
|
| 210 |
raise gr.Error("โณ Another video is being generated. Please wait...")
|
| 211 |
|
| 212 |
try:
|
| 213 |
+
progress(0.05, desc="๐ Validating inputs...")
|
| 214 |
+
logger.info(f"Starting generation - Resolution: {height}x{width}, Duration: {duration_seconds}s, Steps: {steps}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
# ์
๋ ฅ ๊ฒ์ฆ
|
| 217 |
is_valid, error_msg = video_generator.validate_inputs(
|
|
|
|
| 223 |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 224 |
clear_gpu_memory()
|
| 225 |
|
| 226 |
+
progress(0.1, desc="๐ Loading model...")
|
| 227 |
+
|
| 228 |
+
# ๋ชจ๋ธ ๋ก๋ฉ (GPU ํจ์ ๋ด์์)
|
| 229 |
+
if pipe is None:
|
| 230 |
+
try:
|
| 231 |
+
# ์ปดํฌ๋ํธ ๋ก๋
|
| 232 |
+
image_encoder = CLIPVisionModel.from_pretrained(
|
| 233 |
+
config.model_id,
|
| 234 |
+
subfolder="image_encoder",
|
| 235 |
+
torch_dtype=torch.float16,
|
| 236 |
+
low_cpu_mem_usage=True
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 240 |
+
config.model_id,
|
| 241 |
+
subfolder="vae",
|
| 242 |
+
torch_dtype=torch.float16,
|
| 243 |
+
low_cpu_mem_usage=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 247 |
+
config.model_id,
|
| 248 |
+
vae=vae,
|
| 249 |
+
image_encoder=image_encoder,
|
| 250 |
+
torch_dtype=torch.bfloat16,
|
| 251 |
+
low_cpu_mem_usage=True,
|
| 252 |
+
use_safetensors=True
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# ์ค์ผ์ค๋ฌ ์ค์
|
| 256 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 257 |
+
pipe.scheduler.config, flow_shift=8.0
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# LoRA ๋ก๋ (์ ํ์ )
|
| 261 |
+
try:
|
| 262 |
+
causvid_path = hf_hub_download(
|
| 263 |
+
repo_id=config.lora_repo_id, filename=config.lora_filename
|
| 264 |
+
)
|
| 265 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
| 266 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
| 267 |
+
pipe.fuse_lora()
|
| 268 |
+
except:
|
| 269 |
+
logger.warning("LoRA loading skipped")
|
| 270 |
+
|
| 271 |
+
# GPU๋ก ์ด๋
|
| 272 |
+
pipe.to("cuda")
|
| 273 |
+
|
| 274 |
+
# ์ต์ ํ ํ์ฑํ
|
| 275 |
+
pipe.enable_vae_slicing()
|
| 276 |
+
pipe.enable_vae_tiling()
|
| 277 |
+
|
| 278 |
+
# xFormers ์๋
|
| 279 |
+
try:
|
| 280 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 281 |
+
except:
|
| 282 |
+
pass
|
| 283 |
+
|
| 284 |
+
logger.info("Model loaded successfully")
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
logger.error(f"Model loading failed: {e}")
|
| 288 |
+
raise gr.Error("Failed to load model")
|
| 289 |
+
|
| 290 |
+
progress(0.3, desc="๐ฏ Preparing image...")
|
| 291 |
+
|
| 292 |
+
# ์ด๋ฏธ์ง ์ค๋น
|
| 293 |
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
|
| 294 |
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
|
| 295 |
|
| 296 |
+
# ํ๋ ์ ์ ๊ณ์ฐ (๋งค์ฐ ๋ณด์์ )
|
|
|
|
| 297 |
num_frames = min(
|
| 298 |
int(round(duration_seconds * config.fixed_fps)),
|
| 299 |
+
36 # ์ต๋ 36ํ๋ ์ (1.5์ด)
|
| 300 |
)
|
| 301 |
+
num_frames = max(8, num_frames) # ์ต์ 8ํ๋ ์
|
| 302 |
|
| 303 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 304 |
|
| 305 |
+
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ
|
| 306 |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
|
| 307 |
|
| 308 |
+
progress(0.4, desc="๐ฌ Generating video...")
|
|
|
|
| 309 |
|
| 310 |
+
# ๋น๋์ค ์์ฑ
|
| 311 |
+
with torch.inference_mode(), torch.amp.autocast('cuda', enabled=True):
|
| 312 |
+
try:
|
| 313 |
+
# ์งง์ ํ์์์์ผ๋ก ์์ฑ
|
| 314 |
+
output_frames_list = pipe(
|
| 315 |
+
image=resized_image,
|
| 316 |
+
prompt=prompt[:200], # ํ๋กฌํํธ ๊ธธ์ด ์ ํ
|
| 317 |
+
negative_prompt=negative_prompt[:100], # ๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ๋ ์ ํ
|
| 318 |
+
height=target_h,
|
| 319 |
+
width=target_w,
|
| 320 |
+
num_frames=num_frames,
|
| 321 |
+
guidance_scale=float(guidance_scale),
|
| 322 |
+
num_inference_steps=int(steps),
|
| 323 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
| 324 |
+
return_dict=True
|
| 325 |
+
).frames[0]
|
| 326 |
+
|
| 327 |
+
except torch.cuda.OutOfMemoryError:
|
| 328 |
+
clear_gpu_memory()
|
| 329 |
+
raise gr.Error("๐พ GPU out of memory. Try smaller dimensions.")
|
| 330 |
+
except Exception as e:
|
| 331 |
+
logger.error(f"Generation error: {e}")
|
| 332 |
+
raise gr.Error(f"โ Generation failed: {str(e)[:100]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
progress(0.9, desc="๐พ Saving video...")
|
| 335 |
+
|
| 336 |
+
# ๋น๋์ค ์ ์ฅ
|
| 337 |
filename = video_generator.generate_unique_filename(current_seed)
|
| 338 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 339 |
video_path = tmpfile.name
|
|
|
|
| 341 |
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
|
| 342 |
|
| 343 |
progress(1.0, desc="โจ Complete!")
|
| 344 |
+
logger.info(f"Video generated: {num_frames} frames, {target_h}x{target_w}")
|
| 345 |
|
| 346 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 347 |
+
del output_frames_list
|
| 348 |
+
del resized_image
|
| 349 |
+
clear_gpu_memory()
|
| 350 |
|
| 351 |
return video_path, current_seed
|
| 352 |
|
| 353 |
except gr.Error:
|
|
|
|
| 354 |
raise
|
| 355 |
except Exception as e:
|
| 356 |
logger.error(f"Unexpected error: {e}")
|
| 357 |
+
raise gr.Error(f"โ Error: {str(e)[:100]}")
|
| 358 |
|
| 359 |
finally:
|
|
|
|
| 360 |
generation_lock.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
clear_gpu_memory()
|
| 362 |
|
| 363 |
+
# CSS
|
| 364 |
css = """
|
| 365 |
.container {
|
| 366 |
+
max-width: 1000px;
|
| 367 |
margin: auto;
|
| 368 |
padding: 20px;
|
| 369 |
}
|
| 370 |
|
| 371 |
.header {
|
| 372 |
text-align: center;
|
| 373 |
+
margin-bottom: 20px;
|
| 374 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 375 |
+
padding: 30px;
|
| 376 |
+
border-radius: 15px;
|
| 377 |
color: white;
|
| 378 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
}
|
| 380 |
|
| 381 |
.header h1 {
|
| 382 |
+
font-size: 2.5em;
|
| 383 |
margin-bottom: 10px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
}
|
| 385 |
|
| 386 |
+
.warning-box {
|
| 387 |
+
background: #fff3cd;
|
| 388 |
+
border: 1px solid #ffeaa7;
|
| 389 |
+
border-radius: 8px;
|
| 390 |
+
padding: 12px;
|
| 391 |
+
margin: 10px 0;
|
| 392 |
+
color: #856404;
|
| 393 |
+
font-size: 0.9em;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
}
|
| 395 |
|
| 396 |
.generate-btn {
|
| 397 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 398 |
color: white;
|
| 399 |
+
font-size: 1.2em;
|
| 400 |
+
padding: 12px 30px;
|
| 401 |
+
border-radius: 25px;
|
| 402 |
border: none;
|
| 403 |
cursor: pointer;
|
|
|
|
|
|
|
| 404 |
width: 100%;
|
| 405 |
+
margin-top: 15px;
|
| 406 |
}
|
| 407 |
|
| 408 |
.generate-btn:hover {
|
| 409 |
transform: translateY(-2px);
|
| 410 |
+
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
}
|
| 412 |
"""
|
| 413 |
|
| 414 |
# Gradio UI
|
| 415 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 416 |
with gr.Column(elem_classes="container"):
|
| 417 |
+
# Header
|
| 418 |
gr.HTML("""
|
| 419 |
<div class="header">
|
| 420 |
+
<h1>๐ฌ AI Video Generator</h1>
|
| 421 |
+
<p>Transform images into videos with Wan 2.1 (Zero GPU Optimized)</p>
|
|
|
|
| 422 |
</div>
|
| 423 |
""")
|
| 424 |
|
| 425 |
+
# ๊ฒฝ๊ณ
|
| 426 |
gr.HTML("""
|
| 427 |
<div class="warning-box">
|
| 428 |
+
<strong>โก Zero GPU Limitations:</strong>
|
| 429 |
<ul style="margin: 5px 0; padding-left: 20px;">
|
| 430 |
+
<li>Max resolution: 384ร384 (recommended)</li>
|
| 431 |
+
<li>Max duration: 1.5 seconds</li>
|
| 432 |
+
<li>Max steps: 6 (3-4 recommended)</li>
|
| 433 |
+
<li>Processing time: ~40-60 seconds</li>
|
|
|
|
| 434 |
</ul>
|
| 435 |
</div>
|
| 436 |
""")
|
| 437 |
|
| 438 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
with gr.Column(scale=1):
|
| 440 |
+
input_image = gr.Image(
|
| 441 |
+
type="pil",
|
| 442 |
+
label="๐ผ๏ธ Upload Image"
|
| 443 |
+
)
|
| 444 |
|
| 445 |
+
prompt_input = gr.Textbox(
|
| 446 |
+
label="โจ Animation Prompt",
|
| 447 |
+
value=config.default_prompt,
|
| 448 |
+
placeholder="Describe the motion...",
|
| 449 |
+
lines=2,
|
| 450 |
+
max_lines=3
|
| 451 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
|
| 453 |
+
duration_input = gr.Slider(
|
| 454 |
+
minimum=0.3,
|
| 455 |
+
maximum=1.5,
|
| 456 |
+
step=0.1,
|
| 457 |
+
value=1.0,
|
| 458 |
+
label="โฑ๏ธ Duration (seconds)"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
with gr.Accordion("โ๏ธ Settings", open=False):
|
| 462 |
negative_prompt = gr.Textbox(
|
| 463 |
+
label="Negative Prompt",
|
| 464 |
value=config.default_negative_prompt,
|
| 465 |
+
lines=1
|
| 466 |
)
|
| 467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
with gr.Row():
|
| 469 |
height_slider = gr.Slider(
|
| 470 |
+
minimum=128,
|
| 471 |
+
maximum=640,
|
| 472 |
+
step=32,
|
| 473 |
+
value=384,
|
| 474 |
+
label="Height"
|
| 475 |
)
|
| 476 |
width_slider = gr.Slider(
|
| 477 |
+
minimum=128,
|
| 478 |
+
maximum=640,
|
| 479 |
+
step=32,
|
| 480 |
+
value=384,
|
| 481 |
+
label="Width"
|
| 482 |
)
|
| 483 |
|
| 484 |
steps_slider = gr.Slider(
|
| 485 |
minimum=1,
|
| 486 |
+
maximum=6,
|
| 487 |
step=1,
|
| 488 |
+
value=3,
|
| 489 |
+
label="Steps (3-4 recommended)"
|
| 490 |
)
|
| 491 |
|
| 492 |
+
with gr.Row():
|
| 493 |
+
seed = gr.Slider(
|
| 494 |
+
minimum=0,
|
| 495 |
+
maximum=MAX_SEED,
|
| 496 |
+
step=1,
|
| 497 |
+
value=42,
|
| 498 |
+
label="Seed"
|
| 499 |
+
)
|
| 500 |
+
randomize_seed = gr.Checkbox(
|
| 501 |
+
label="Random",
|
| 502 |
+
value=True
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
guidance_scale = gr.Slider(
|
| 506 |
minimum=0.0,
|
| 507 |
+
maximum=5.0,
|
| 508 |
step=0.5,
|
| 509 |
value=1.0,
|
| 510 |
+
label="Guidance Scale",
|
| 511 |
visible=False
|
| 512 |
)
|
| 513 |
|
|
|
|
| 518 |
)
|
| 519 |
|
| 520 |
with gr.Column(scale=1):
|
|
|
|
| 521 |
video_output = gr.Video(
|
| 522 |
+
label="Generated Video",
|
| 523 |
+
autoplay=True
|
|
|
|
| 524 |
)
|
| 525 |
|
| 526 |
+
gr.Markdown("""
|
| 527 |
+
### ๐ก Tips:
|
| 528 |
+
- Use 384ร384 for best results
|
| 529 |
+
- Keep prompts simple and clear
|
| 530 |
+
- 3-4 steps is optimal
|
| 531 |
+
- Wait for completion before next generation
|
| 532 |
""")
|
| 533 |
|
| 534 |
+
# Event handlers
|
| 535 |
+
input_image.upload(
|
| 536 |
+
fn=handle_image_upload,
|
| 537 |
+
inputs=[input_image],
|
| 538 |
+
outputs=[height_slider, width_slider]
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
generate_btn.click(
|
| 542 |
+
fn=generate_video,
|
| 543 |
+
inputs=[
|
| 544 |
+
input_image, prompt_input, height_slider, width_slider,
|
| 545 |
+
negative_prompt, duration_input, guidance_scale,
|
| 546 |
+
steps_slider, seed, randomize_seed
|
| 547 |
+
],
|
| 548 |
+
outputs=[video_output, seed]
|
| 549 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
if __name__ == "__main__":
|
| 552 |
+
logger.info("Starting app in Zero GPU environment")
|
| 553 |
+
demo.queue(max_size=3) # ์์ ํ ์ฌ์ด์ฆ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
demo.launch()
|