Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import torch | |
| import gc | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| from diffusers import StableDiffusionXLPipeline | |
| import open_clip | |
| from huggingface_hub import hf_hub_download | |
| from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL | |
| from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition | |
| from IP_Composer.generate_text_embeddings import load_descriptions, generate_embeddings | |
| import spaces | |
| import random | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Initialize SDXL pipeline | |
| base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| base_model_path, | |
| torch_dtype=torch.float16, | |
| add_watermarker=False, | |
| ) | |
| # Initialize IP-Adapter | |
| image_encoder_repo = 'h94/IP-Adapter' | |
| image_encoder_subfolder = 'models/image_encoder' | |
| ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin') | |
| ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device) | |
| # Initialize CLIP model | |
| clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K') | |
| clip_model.to(device) | |
| tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K') | |
| CONCEPTS_MAP={ | |
| "age": "age_descriptions.npy", | |
| "animal fur": "fur_descriptions.npy", | |
| "dogs": "dog_descriptions.npy", | |
| "emotions": "emotion_descriptions.npy", | |
| "flowers": "flower_descriptions.npy", | |
| "fruit/vegtable": "fruit_vegetable_descriptions.npy", | |
| "outfit type": "outfit_descriptions.npy", | |
| "outfit pattern (including color)": "outfit_pattern_descriptions.npy", | |
| "patterns": "pattern_descriptions.npy", | |
| "patterns (including color)": "pattern_descriptions_with_colors.npy", | |
| "vehicle": "vehicle_descriptions.npy", | |
| "daytime": "times_of_day_descriptions.npy", | |
| "pose": "person_poses_descriptions.npy", | |
| "season": "season_descriptions.npy", | |
| "material": "material_descriptions_with_gems.npy" | |
| } | |
| RANKS_MAP={ | |
| "age": 30, | |
| "animal fur": 80, | |
| "dogs": 30, | |
| "emotions": 30, | |
| "flowers": 30, | |
| "fruit/vegtable": 30, | |
| "outfit type": 30, | |
| "outfit pattern (including color)": 80, | |
| "patterns": 80, | |
| "patterns (including color)": 80, | |
| "vehicle": 30, | |
| "daytime": 30, | |
| "pose": 30, | |
| "season": 30, | |
| "material": 80, | |
| } | |
| concept_options = list(CONCEPTS_MAP.keys()) | |
| examples = [ | |
| ['./IP_Composer/assets/patterns/base.jpg', './IP_Composer/assets/patterns/pattern.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/flowers/base.png', './IP_Composer/assets/flowers/concept.png', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/materials/base.png', './IP_Composer/assets/materials/concept.jpg', 'material', None, None, None, None, 80, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/vehicle/base.png', './IP_Composer/assets/vehicle/concept.png', 'vehicle', None, None, None, None, 30, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/red_pattern.png', 'patterns (including color)', None, None, None, None, 100, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30], | |
| ['./IP_Composer/assets/flowers/rose_1.jpg', './IP_Composer/assets/flowers/flowers_3.jpg', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30], | |
| ] | |
| def generate_examples(base_image, | |
| concept_image1, concept_name1, | |
| concept_image2, concept_name2, | |
| concept_image3, concept_name3, | |
| rank1, rank2, rank3, | |
| prompt, scale, seed, num_inference_steps): | |
| return process_and_display(base_image, | |
| concept_image1, concept_name1, | |
| concept_image2, concept_name2, | |
| concept_image3, concept_name3, | |
| rank1, rank2, rank3, | |
| prompt, scale, seed, num_inference_steps) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def change_rank_default(concept_name): | |
| return RANKS_MAP.get(concept_name, 30) | |
| def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device): | |
| """Get CLIP image embeddings for a given PIL image""" | |
| image = preproc(pil_image)[np.newaxis, :, :, :] | |
| with torch.no_grad(): | |
| embeds = model.encode_image(image.to(dev)) | |
| return embeds.cpu().detach().numpy() | |
| def process_images( | |
| base_image, | |
| concept_image1, concept_name1, | |
| concept_image2=None, concept_name2=None, | |
| concept_image3=None, concept_name3=None, | |
| rank1=10, rank2=10, rank3=10, | |
| prompt=None, | |
| scale=1.0, | |
| seed=420, | |
| num_inference_steps=50, | |
| concpet_from_file_1 = None, | |
| concpet_from_file_2 = None, | |
| concpet_from_file_3 = None, | |
| use_concpet_from_file_1 = False, | |
| use_concpet_from_file_2 = False, | |
| use_concpet_from_file_3 = False | |
| ): | |
| """Process the base image and concept images to generate modified images""" | |
| # Process base image | |
| base_image_pil = Image.fromarray(base_image).convert("RGB") | |
| base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device) | |
| # Process concept images | |
| concept_images = [] | |
| concept_descriptions = [] | |
| skip_load_concept =[False,False, False] | |
| # for demo purposes we allow for up to 3 different concepts and corresponding concept images | |
| if concept_image1 is not None: | |
| concept_images.append(concept_image1) | |
| if use_concpet_from_file_1 and concpet_from_file_1 is not None: # if concept is new from user input | |
| concept_descriptions.append(concpet_from_file_1) | |
| skip_load_concept[0] = True | |
| else: | |
| concept_descriptions.append(CONCEPTS_MAP[concept_name1]) | |
| else: | |
| return None, "Please upload at least one concept image" | |
| # Add second concept (optional) | |
| if concept_image2 is not None: | |
| concept_images.append(concept_image2) | |
| if use_concpet_from_file_2 and concpet_from_file_2 is not None: # if concept is new from user input | |
| concept_descriptions.append(concpet_from_file_2) | |
| skip_load_concept[1] = True | |
| else: | |
| concept_descriptions.append(CONCEPTS_MAP[concept_name2]) | |
| # Add third concept (optional) | |
| if concept_image3 is not None: | |
| concept_images.append(concept_image3) | |
| if use_concpet_from_file_3 and concpet_from_file_3 is not None: # if concept is new from user input | |
| concept_descriptions.append(concpet_from_file_3) | |
| skip_load_concept[2] = True | |
| else: | |
| concept_descriptions.append(CONCEPTS_MAP[concept_name3]) | |
| # Get all ranks | |
| ranks = [rank1] | |
| if concept_image2 is not None: | |
| ranks.append(rank2) | |
| if concept_image3 is not None: | |
| ranks.append(rank3) | |
| concept_embeds = [] | |
| projection_matrices = [] | |
| # for the demo, we assume 1 concept image per concept | |
| # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it | |
| for i, concept in enumerate(concept_descriptions): | |
| img_pil = Image.fromarray(concept_images[i]).convert("RGB") | |
| concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device)) | |
| if skip_load_concept[i]: # if concept is new from user input | |
| all_embeds_in = concept | |
| else: | |
| embeds_path = f"./IP_Composer/text_embeddings/{concept}" | |
| with open(embeds_path, "rb") as f: | |
| all_embeds_in = np.load(f) | |
| projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i]) | |
| projection_matrices.append(projection_matrix) | |
| # Create projection data structure for the composition | |
| projections_data = [ | |
| { | |
| "embed": embed, | |
| "projection_matrix": proj_matrix | |
| } | |
| for embed, proj_matrix in zip(concept_embeds, projection_matrices) | |
| ] | |
| # Generate modified images - | |
| modified_images = get_modified_images_embeds_composition( | |
| base_embed, | |
| projections_data, | |
| ip_model, | |
| prompt=prompt, | |
| scale=scale, | |
| num_samples=1, | |
| seed=seed, | |
| num_inference_steps=num_inference_steps | |
| ) | |
| return modified_images[0] | |
| def get_text_embeddings(concept_file): | |
| print("generating text embeddings") | |
| descriptions = load_descriptions(concept_file) | |
| embeddings = generate_embeddings(descriptions, clip_model, tokenizer, device, batch_size=100) | |
| print("text embeddings shape",embeddings.shape) | |
| return embeddings, True | |
| def process_and_display( | |
| base_image, | |
| concept_image1, concept_name1="age", | |
| concept_image2=None, concept_name2=None, | |
| concept_image3=None, concept_name3=None, | |
| rank1=30, rank2=30, rank3=30, | |
| prompt=None, scale=1.0, seed=0, num_inference_steps=50, | |
| concpet_from_file_1 = None, | |
| concpet_from_file_2 = None, | |
| concpet_from_file_3 = None, | |
| use_concpet_from_file_1 = False, | |
| use_concpet_from_file_2 = False, | |
| use_concpet_from_file_3 = False | |
| ): | |
| if base_image is None: | |
| raise gr.Error("Please upload a base image") | |
| if concept_image1 is None: | |
| raise gr.Error("Choose at least one concept image") | |
| if concept_image1 is None: | |
| raise gr.Error("Choose at least one concept type") | |
| modified_images = process_images( | |
| base_image, | |
| concept_image1, concept_name1, | |
| concept_image2, concept_name2, | |
| concept_image3, concept_name3, | |
| rank1, rank2, rank3, | |
| prompt, scale, seed, num_inference_steps, | |
| concpet_from_file_1, | |
| concpet_from_file_2, | |
| concpet_from_file_3, | |
| use_concpet_from_file_1, | |
| use_concpet_from_file_2, | |
| use_concpet_from_file_3 | |
| ) | |
| return modified_images | |
| # UI CSS | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 800px; | |
| } | |
| """ | |
| example = """ | |
| Emotion Description | |
| a photo of a person feeling joyful | |
| a photo of a person feeling sorrowful | |
| a photo of a person feeling enraged | |
| a photo of a person feeling astonished | |
| a photo of a person feeling disgusted | |
| a photo of a person feeling terrified | |
| ... | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(f"""# IP Composer 🌅✚🖌️ | |
| ### compose new images with visual concepts extracted from refrence images using CLIP & IP Adapter | |
| #### 🛠️ How to Use: | |
| 1. Upload a base image | |
| 2. Upload 1–3 concept images | |
| 3. Select a **concept type** to extract from each concept image: | |
| - Choose a **predefined concept type** from the dropdown (e.g. pattern, emotion, pose), **or** | |
| - Upload a **file with text variations of your concept** (e.g. prompts from an LLM). | |
| - 👉 If you're uploading a **new concept**, don't forget to **adjust the "rank" value** under **Advanced Options** for better results. | |
| Following the algorithm proposed in IP-Composer: Semantic Composition of Visual Concepts by Dorfman et al. | |
| [[Project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)] | |
| """) | |
| concpet_from_file_1 = gr.State() | |
| concpet_from_file_2 = gr.State() | |
| concpet_from_file_3 = gr.State() | |
| use_concpet_from_file_1 = gr.State() | |
| use_concpet_from_file_2 = gr.State() | |
| use_concpet_from_file_3 = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| base_image = gr.Image(label="Base Image (Required)", type="numpy") | |
| with gr.Tab("Concept 1"): | |
| with gr.Group(): | |
| concept_image1 = gr.Image(label="Concept Image 1", type="numpy") | |
| with gr.Row(): | |
| concept_name1 = gr.Dropdown(concept_options, label="Concept 1", value=None, info="Pick concept type") | |
| with gr.Accordion("💡 Or use a new concept 👇", open=False): | |
| gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)") | |
| gr.Markdown("2. Prefereably with > 100 variations.") | |
| with gr.Accordion("File example for the concept 'emotions'", open=False): | |
| gr.Markdown(example) | |
| concept_file_1 = gr.File(label="Concept variations", file_types=["text"]) | |
| with gr.Tab("Concept 2 (Optional)"): | |
| with gr.Group(): | |
| concept_image2 = gr.Image(label="Concept Image 2", type="numpy") | |
| with gr.Row(): | |
| concept_name2 = gr.Dropdown(concept_options, label="Concept 2", value=None, info="Pick concept type") | |
| with gr.Accordion("💡 Or use a new concept 👇", open=False): | |
| gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)") | |
| gr.Markdown("2. Prefereably with > 100 variations.") | |
| with gr.Accordion("File example for the concept 'emotions'", open=False): | |
| gr.Markdown(example) | |
| concept_file_2 = gr.File(label="Concept variations", file_types=["text"]) | |
| with gr.Tab("Concept 3 (optional)"): | |
| with gr.Group(): | |
| concept_image3 = gr.Image(label="Concept Image 3", type="numpy") | |
| with gr.Row(): | |
| concept_name3 = gr.Dropdown(concept_options, label="Concept 3", value= None, info="Pick concept type") | |
| with gr.Accordion("💡 Or use a new concept 👇", open=False): | |
| gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)") | |
| gr.Markdown("2. Prefereably with > 100 variations.") | |
| with gr.Accordion("File example for the concept 'emotions'", open=False): | |
| gr.Markdown(example) | |
| concept_file_3 = gr.File(label="Concept variations", file_types=["text"]) | |
| with gr.Accordion("Advanced options", open=False): | |
| prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation") | |
| num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Num steps") | |
| with gr.Row(): | |
| scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale") | |
| randomize_seed = gr.Checkbox(value=True, label="Randomize seed") | |
| seed = gr.Number(value=0, label="Seed", precision=0) | |
| with gr.Column(): | |
| gr.Markdown("If a concept is not showing enough, try to increase the rank") | |
| with gr.Row(): | |
| rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 1") | |
| rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 2") | |
| rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 3") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Composed output", show_label=True) | |
| submit_btn = gr.Button("Generate") | |
| gr.Examples( | |
| examples, | |
| inputs=[base_image, | |
| concept_image1, concept_name1, | |
| concept_image2, concept_name2, | |
| concept_image3, concept_name3, | |
| rank1, rank2, rank3, | |
| prompt, scale, seed, num_inference_steps], | |
| outputs=[output_image], | |
| fn=generate_examples, | |
| cache_examples=False | |
| ) | |
| concept_file_1.upload( | |
| fn=get_text_embeddings, | |
| inputs=[concept_file_1], | |
| outputs=[concpet_from_file_1, use_concpet_from_file_1] | |
| ) | |
| concept_file_2.upload( | |
| fn=get_text_embeddings, | |
| inputs=[concept_file_2], | |
| outputs=[concpet_from_file_2, use_concpet_from_file_2] | |
| ) | |
| concept_file_3.upload( | |
| fn=get_text_embeddings, | |
| inputs=[concept_file_3], | |
| outputs=[concpet_from_file_3, use_concpet_from_file_3] | |
| ) | |
| concept_file_1.delete( | |
| fn=lambda x: False, | |
| inputs=[concept_file_1], | |
| outputs=[use_concpet_from_file_1] | |
| ) | |
| concept_file_2.delete( | |
| fn=lambda x: False, | |
| inputs=[concept_file_2], | |
| outputs=[use_concpet_from_file_2] | |
| ) | |
| concept_file_3.delete( | |
| fn=lambda x: False, | |
| inputs=[concept_file_3], | |
| outputs=[use_concpet_from_file_3] | |
| ) | |
| submit_btn.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| ).then(fn=process_and_display, | |
| inputs=[ | |
| base_image, | |
| concept_image1, concept_name1, | |
| concept_image2, concept_name2, | |
| concept_image3, concept_name3, | |
| rank1, rank2, rank3, | |
| prompt, scale, seed, num_inference_steps, | |
| concpet_from_file_1, | |
| concpet_from_file_2, | |
| concpet_from_file_3, | |
| use_concpet_from_file_1, | |
| use_concpet_from_file_2, | |
| use_concpet_from_file_3 | |
| ], | |
| outputs=[output_image] | |
| ) | |
| concept_name1.select( | |
| fn= change_rank_default, | |
| inputs=[concept_name1], | |
| outputs=[rank1] | |
| ) | |
| concept_name2.select( | |
| fn= change_rank_default, | |
| inputs=[concept_name2], | |
| outputs=[rank2] | |
| ) | |
| concept_name3.select( | |
| fn= change_rank_default, | |
| inputs=[concept_name3], | |
| outputs=[rank3] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |