Spaces:
Running
on
Zero
Running
on
Zero
| import os, json, random, gc | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| from gradio.themes import Soft | |
| from diffusers import StableDiffusionXLPipeline | |
| import open_clip | |
| from huggingface_hub import hf_hub_download | |
| from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL | |
| from IP_Composer.perform_swap import ( | |
| compute_dataset_embeds_svd, | |
| get_modified_images_embeds_composition, | |
| ) | |
| from IP_Composer.generate_text_embeddings import ( | |
| load_descriptions, | |
| generate_embeddings, | |
| ) | |
| import spaces | |
| # ───────────────────────────── | |
| # 1 · Device | |
| # ───────────────────────────── | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # ───────────────────────────── | |
| # 2 · Stable-Diffusion XL | |
| # ───────────────────────────── | |
| base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| base_model_path, | |
| torch_dtype=torch.float16, | |
| add_watermarker=False, | |
| ) | |
| # ───────────────────────────── | |
| # 3 · IP-Adapter | |
| # ───────────────────────────── | |
| image_encoder_repo = "h94/IP-Adapter" | |
| image_encoder_subfolder = "models/image_encoder" | |
| ip_ckpt = hf_hub_download( | |
| "h94/IP-Adapter", subfolder="sdxl_models", filename="ip-adapter_sdxl_vit-h.bin" | |
| ) | |
| ip_model = IPAdapterXL( | |
| pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device | |
| ) | |
| # ───────────────────────────── | |
| # 4 · CLIP | |
| # ───────────────────────────── | |
| clip_model, _, preprocess = open_clip.create_model_and_transforms( | |
| "hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
| ) | |
| clip_model.to(device) | |
| tokenizer = open_clip.get_tokenizer( | |
| "hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
| ) | |
| # ───────────────────────────── | |
| # 5 · Concept maps | |
| # ───────────────────────────── | |
| CONCEPTS_MAP = { | |
| "age": "age_descriptions.npy", | |
| "animal fur": "fur_descriptions.npy", | |
| "dogs": "dog_descriptions.npy", | |
| "emotions": "emotion_descriptions.npy", | |
| "flowers": "flower_descriptions.npy", | |
| "fruit/vegtable": "fruit_vegetable_descriptions.npy", | |
| "outfit type": "outfit_descriptions.npy", | |
| "outfit pattern (including color)": "outfit_pattern_descriptions.npy", | |
| "patterns": "pattern_descriptions.npy", | |
| "patterns (including color)": "pattern_descriptions_with_colors.npy", | |
| "vehicle": "vehicle_descriptions.npy", | |
| "daytime": "times_of_day_descriptions.npy", | |
| "pose": "person_poses_descriptions.npy", | |
| "season": "season_descriptions.npy", | |
| "material": "material_descriptions_with_gems.npy", | |
| } | |
| RANKS_MAP = { | |
| "age": 30, | |
| "animal fur": 80, | |
| "dogs": 30, | |
| "emotions": 30, | |
| "flowers": 30, | |
| "fruit/vegtable": 30, | |
| "outfit type": 30, | |
| "outfit pattern (including color)": 80, | |
| "patterns": 80, | |
| "patterns (including color)": 80, | |
| "vehicle": 30, | |
| "daytime": 30, | |
| "pose": 30, | |
| "season": 30, | |
| "material": 80, | |
| } | |
| concept_options = list(CONCEPTS_MAP.keys()) | |
| # ───────────────────────────── | |
| # 6 · Example tuples (base_img, c1_img, …) | |
| # ───────────────────────────── | |
| examples = [ | |
| [ | |
| "./IP_Composer/assets/patterns/base.jpg", | |
| "./IP_Composer/assets/patterns/pattern.png", | |
| "patterns (including color)", | |
| None, | |
| None, | |
| None, | |
| None, | |
| 80, | |
| 30, | |
| 30, | |
| None, | |
| 1.0, | |
| 0, | |
| 30, | |
| ], | |
| [ | |
| "./IP_Composer/assets/flowers/base.png", | |
| "./IP_Composer/assets/flowers/concept.png", | |
| "flowers", | |
| None, | |
| None, | |
| None, | |
| None, | |
| 30, | |
| 30, | |
| 30, | |
| None, | |
| 1.0, | |
| 0, | |
| 30, | |
| ], | |
| [ | |
| "./IP_Composer/assets/materials/base.png", | |
| "./IP_Composer/assets/materials/concept.jpg", | |
| "material", | |
| None, | |
| None, | |
| None, | |
| None, | |
| 80, | |
| 30, | |
| 30, | |
| None, | |
| 1.0, | |
| 0, | |
| 30, | |
| ], | |
| ] | |
| # ---------------------------------------------------------- | |
| # 7 · Utility functions | |
| # ---------------------------------------------------------- | |
| def generate_examples( | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2, | |
| concept_name2, | |
| concept_image3, | |
| concept_name3, | |
| rank1, | |
| rank2, | |
| rank3, | |
| prompt, | |
| scale, | |
| seed, | |
| num_inference_steps, | |
| ): | |
| return process_and_display( | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2, | |
| concept_name2, | |
| concept_image3, | |
| concept_name3, | |
| rank1, | |
| rank2, | |
| rank3, | |
| prompt, | |
| scale, | |
| seed, | |
| num_inference_steps, | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| return random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def change_rank_default(concept_name): | |
| return RANKS_MAP.get(concept_name, 30) | |
| def match_image_to_concept(image): | |
| if image is None: | |
| return None | |
| img_pil = Image.fromarray(image).convert("RGB") | |
| img_embed = get_image_embeds(img_pil, clip_model, preprocess, device) | |
| sims = {} | |
| for cname, cfile in CONCEPTS_MAP.items(): | |
| try: | |
| with open(f"./IP_Composer/text_embeddings/{cfile}", "rb") as f: | |
| embeds = np.load(f) | |
| scores = [] | |
| for e in embeds: | |
| s = np.dot( | |
| img_embed.flatten() / np.linalg.norm(img_embed), | |
| e.flatten() / np.linalg.norm(e), | |
| ) | |
| scores.append(s) | |
| scores.sort(reverse=True) | |
| sims[cname] = np.mean(scores[:5]) | |
| except Exception as e: | |
| print(cname, "error:", e) | |
| if sims: | |
| best = max(sims, key=sims.get) | |
| gr.Info(f"Image automatically matched to concept: {best}") | |
| return best | |
| return None | |
| def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device): | |
| image = preproc(pil_image)[np.newaxis, :, :, :] | |
| with torch.no_grad(): | |
| embeds = model.encode_image(image.to(dev)) | |
| return embeds.cpu().detach().numpy() | |
| def process_images( | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2=None, | |
| concept_name2=None, | |
| concept_image3=None, | |
| concept_name3=None, | |
| rank1=10, | |
| rank2=10, | |
| rank3=10, | |
| prompt=None, | |
| scale=1.0, | |
| seed=420, | |
| num_inference_steps=50, | |
| concpet_from_file_1=None, | |
| concpet_from_file_2=None, | |
| concpet_from_file_3=None, | |
| use_concpet_from_file_1=False, | |
| use_concpet_from_file_2=False, | |
| use_concpet_from_file_3=False, | |
| ): | |
| base_pil = Image.fromarray(base_image).convert("RGB") | |
| base_embed = get_image_embeds(base_pil, clip_model, preprocess, device) | |
| concept_images, concept_descs, ranks = [], [], [] | |
| skip = [False, False, False] | |
| # concept 1 | |
| if concept_image1 is None: | |
| return None, "Please upload at least one concept image" | |
| concept_images.append(concept_image1) | |
| if use_concpet_from_file_1 and concpet_from_file_1 is not None: | |
| concept_descs.append(concpet_from_file_1) | |
| skip[0] = True | |
| else: | |
| concept_descs.append(CONCEPTS_MAP[concept_name1]) | |
| ranks.append(rank1) | |
| # concept 2 | |
| if concept_image2 is not None: | |
| concept_images.append(concept_image2) | |
| if use_concpet_from_file_2 and concpet_from_file_2 is not None: | |
| concept_descs.append(concpet_from_file_2) | |
| skip[1] = True | |
| else: | |
| concept_descs.append(CONCEPTS_MAP[concept_name2]) | |
| ranks.append(rank2) | |
| # concept 3 | |
| if concept_image3 is not None: | |
| concept_images.append(concept_image3) | |
| if use_concpet_from_file_3 and concpet_from_file_3 is not None: | |
| concept_descs.append(concpet_from_file_3) | |
| skip[2] = True | |
| else: | |
| concept_descs.append(CONCEPTS_MAP[concept_name3]) | |
| ranks.append(rank3) | |
| concept_embeds, proj_mats = [], [] | |
| for i, concept in enumerate(concept_descs): | |
| img_pil = Image.fromarray(concept_images[i]).convert("RGB") | |
| concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device)) | |
| if skip[i]: | |
| all_embeds = concept | |
| else: | |
| with open(f"./IP_Composer/text_embeddings/{concept}", "rb") as f: | |
| all_embeds = np.load(f) | |
| proj_mats.append(compute_dataset_embeds_svd(all_embeds, ranks[i])) | |
| projections_data = [ | |
| {"embed": e, "projection_matrix": p} | |
| for e, p in zip(concept_embeds, proj_mats) | |
| ] | |
| modified = get_modified_images_embeds_composition( | |
| base_embed, | |
| projections_data, | |
| ip_model, | |
| prompt=prompt, | |
| scale=scale, | |
| num_samples=1, | |
| seed=seed, | |
| num_inference_steps=num_inference_steps, | |
| ) | |
| return modified[0] | |
| def get_text_embeddings(concept_file): | |
| descs = load_descriptions(concept_file) | |
| embeds = generate_embeddings(descs, clip_model, tokenizer, device, batch_size=100) | |
| return embeds, True | |
| def process_and_display( | |
| base_image, | |
| concept_image1, | |
| concept_name1="age", | |
| concept_image2=None, | |
| concept_name2=None, | |
| concept_image3=None, | |
| concept_name3=None, | |
| rank1=30, | |
| rank2=30, | |
| rank3=30, | |
| prompt=None, | |
| scale=1.0, | |
| seed=0, | |
| num_inference_steps=50, | |
| concpet_from_file_1=None, | |
| concpet_from_file_2=None, | |
| concpet_from_file_3=None, | |
| use_concpet_from_file_1=False, | |
| use_concpet_from_file_2=False, | |
| use_concpet_from_file_3=False, | |
| ): | |
| if base_image is None: | |
| raise gr.Error("Please upload a base image") | |
| if concept_image1 is None: | |
| raise gr.Error("Choose at least one concept image") | |
| return process_images( | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2, | |
| concept_name2, | |
| concept_image3, | |
| concept_name3, | |
| rank1, | |
| rank2, | |
| rank3, | |
| prompt, | |
| scale, | |
| seed, | |
| num_inference_steps, | |
| concpet_from_file_1, | |
| concpet_from_file_2, | |
| concpet_from_file_3, | |
| use_concpet_from_file_1, | |
| use_concpet_from_file_2, | |
| use_concpet_from_file_3, | |
| ) | |
| # ---------------------------------------------------------- | |
| # 8 · THEME & CSS | |
| # ---------------------------------------------------------- | |
| demo_theme = Soft(primary_hue="purple", font=[gr.themes.GoogleFont("Inter")]) | |
| css = """ | |
| body{ | |
| background:#0f0c29; | |
| background:linear-gradient(135deg,#0f0c29,#302b63,#24243e); | |
| } | |
| #header{ | |
| text-align:center; | |
| padding:24px 0 8px; | |
| font-weight:700; | |
| font-size:2.1rem; | |
| color:#ffffff; | |
| } | |
| .gradio-container{max-width:1024px !important;margin:0 auto} | |
| .card{ | |
| border-radius:18px; | |
| background:#ffffff0d; | |
| padding:18px 22px; | |
| backdrop-filter:blur(6px); | |
| } | |
| .gr-image,.gr-video{border-radius:14px} | |
| .gr-image:hover{box-shadow:0 0 0 4px #a855f7} | |
| """ | |
| # ---------------------------------------------------------- | |
| # 9 · UI | |
| # ---------------------------------------------------------- | |
| example_gallery = [ | |
| ["./IP_Composer/assets/patterns/base.jpg", "Patterns demo"], | |
| ["./IP_Composer/assets/flowers/base.png", "Flowers demo"], | |
| ["./IP_Composer/assets/materials/base.png", "Material demo"], | |
| ] | |
| with gr.Blocks(css=css, theme=demo_theme) as demo: | |
| gr.Markdown( | |
| "<div id='header'>🌅 IP-Composer " | |
| "<sup style='font-size:14px'>SDXL</sup></div>" | |
| ) | |
| concpet_from_file_1, concpet_from_file_2, concpet_from_file_3 = ( | |
| gr.State(), | |
| gr.State(), | |
| gr.State(), | |
| ) | |
| use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3 = ( | |
| gr.State(), | |
| gr.State(), | |
| gr.State(), | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(elem_classes="card"): | |
| base_image = gr.Image( | |
| label="Base Image (Required)", type="numpy", height=400, width=400 | |
| ) | |
| for idx in (1, 2, 3): | |
| with gr.Column(elem_classes="card"): | |
| locals()[f"concept_image{idx}"] = gr.Image( | |
| label=f"Concept Image {idx}" | |
| if idx == 1 | |
| else f"Concept {idx} (Optional)", | |
| type="numpy", | |
| height=400, | |
| width=400, | |
| ) | |
| locals()[f"concept_name{idx}"] = gr.Dropdown( | |
| concept_options, | |
| label=f"Concept {idx}", | |
| value=None if idx != 1 else "age", | |
| info="Pick concept type", | |
| ) | |
| with gr.Accordion("💡 Or use a new concept 👇", open=False): | |
| gr.Markdown( | |
| "1. Upload a file with **>100** text variations<br>" | |
| "2. Tip: Ask an LLM to list variations." | |
| ) | |
| if idx == 1: | |
| concept_file_1 = gr.File( | |
| label="Concept variations", file_types=["text"] | |
| ) | |
| elif idx == 2: | |
| concept_file_2 = gr.File( | |
| label="Concept variations", file_types=["text"] | |
| ) | |
| else: | |
| concept_file_3 = gr.File( | |
| label="Concept variations", file_types=["text"] | |
| ) | |
| with gr.Column(elem_classes="card"): | |
| with gr.Accordion("⚙️ Advanced options", open=False): | |
| prompt = gr.Textbox( | |
| label="Guidance Prompt (Optional)", | |
| placeholder="Optional text prompt to guide generation", | |
| ) | |
| num_inference_steps = gr.Slider(1, 50, 30, step=1, label="Num steps") | |
| with gr.Row(): | |
| scale = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="Scale") | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Number(value=0, label="Seed", precision=0) | |
| gr.Markdown( | |
| "If a concept is not showing enough, **increase rank** ⬇️" | |
| ) | |
| with gr.Row(): | |
| rank1 = gr.Slider(1, 150, 30, step=1, label="Rank concept 1") | |
| rank2 = gr.Slider(1, 150, 30, step=1, label="Rank concept 2") | |
| rank3 = gr.Slider(1, 150, 30, step=1, label="Rank concept 3") | |
| with gr.Column(elem_classes="card"): | |
| output_image = gr.Image(show_label=False, height=480) | |
| submit_btn = gr.Button("🔮 Generate", variant="primary", size="lg") | |
| gr.Markdown("### 🔥 Ready-made examples") | |
| gr.Gallery(example_gallery, label="Preview", columns=[3], height="auto") | |
| gr.Examples( | |
| examples, | |
| inputs=[ | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2, | |
| concept_name2, | |
| concept_image3, | |
| concept_name3, | |
| rank1, | |
| rank2, | |
| rank3, | |
| prompt, | |
| scale, | |
| seed, | |
| num_inference_steps, | |
| ], | |
| outputs=[output_image], | |
| fn=generate_examples, | |
| cache_examples=False, | |
| ) | |
| # Upload hooks | |
| concept_file_1.upload( | |
| get_text_embeddings, | |
| [concept_file_1], | |
| [concpet_from_file_1, use_concpet_from_file_1], | |
| ) | |
| concept_file_2.upload( | |
| get_text_embeddings, | |
| [concept_file_2], | |
| [concpet_from_file_2, use_concpet_from_file_2], | |
| ) | |
| concept_file_3.upload( | |
| get_text_embeddings, | |
| [concept_file_3], | |
| [concpet_from_file_3, use_concpet_from_file_3], | |
| ) | |
| concept_file_1.delete( | |
| lambda _: False, [concept_file_1], [use_concpet_from_file_1] | |
| ) | |
| concept_file_2.delete( | |
| lambda _: False, [concept_file_2], [use_concpet_from_file_2] | |
| ) | |
| concept_file_3.delete( | |
| lambda _: False, [concept_file_3], [use_concpet_from_file_3] | |
| ) | |
| # Dropdown auto-rank | |
| concept_name1.select(change_rank_default, [concept_name1], [rank1]) | |
| concept_name2.select(change_rank_default, [concept_name2], [rank2]) | |
| concept_name3.select(change_rank_default, [concept_name3], [rank3]) | |
| # Auto-match on upload | |
| concept_image1.upload(match_image_to_concept, [concept_image1], [concept_name1]) | |
| concept_image2.upload(match_image_to_concept, [concept_image2], [concept_name2]) | |
| concept_image3.upload(match_image_to_concept, [concept_image3], [concept_name3]) | |
| # Generate chain | |
| submit_btn.click(randomize_seed_fn, [seed, randomize_seed], seed).then( | |
| process_and_display, | |
| [ | |
| base_image, | |
| concept_image1, | |
| concept_name1, | |
| concept_image2, | |
| concept_name2, | |
| concept_image3, | |
| concept_name3, | |
| rank1, | |
| rank2, | |
| rank3, | |
| prompt, | |
| scale, | |
| seed, | |
| num_inference_steps, | |
| concpet_from_file_1, | |
| concpet_from_file_2, | |
| concpet_from_file_3, | |
| use_concpet_from_file_1, | |
| use_concpet_from_file_2, | |
| use_concpet_from_file_3, | |
| ], | |
| [output_image], | |
| ) | |
| # ───────────────────────────── | |
| # 10 · Launch | |
| # ───────────────────────────── | |
| if __name__ == "__main__": | |
| demo.launch() | |