Spaces:
Running
on
Zero
Running
on
Zero
add num_inference_steps
Browse files
app.py
CHANGED
|
@@ -71,7 +71,7 @@ concept_options = list(CONCEPTS_MAP.keys())
|
|
| 71 |
|
| 72 |
|
| 73 |
examples = [
|
| 74 |
-
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0]
|
| 75 |
|
| 76 |
]
|
| 77 |
|
|
@@ -80,13 +80,13 @@ def generate_examples(base_image,
|
|
| 80 |
concept_image2, concept_name2,
|
| 81 |
concept_image3, concept_name3,
|
| 82 |
rank1, rank2, rank3,
|
| 83 |
-
prompt, scale, seed):
|
| 84 |
return process_and_display(base_image,
|
| 85 |
concept_image1, concept_name1,
|
| 86 |
concept_image2, concept_name2,
|
| 87 |
concept_image3, concept_name3,
|
| 88 |
rank1, rank2, rank3,
|
| 89 |
-
prompt, scale, seed)
|
| 90 |
|
| 91 |
|
| 92 |
|
|
@@ -117,7 +117,8 @@ def process_images(
|
|
| 117 |
rank1=10, rank2=10, rank3=10,
|
| 118 |
prompt=None,
|
| 119 |
scale=1.0,
|
| 120 |
-
seed=420
|
|
|
|
| 121 |
):
|
| 122 |
"""Process the base image and concept images to generate modified images"""
|
| 123 |
# Process base image
|
|
@@ -186,6 +187,7 @@ def process_images(
|
|
| 186 |
scale=scale,
|
| 187 |
num_samples=1,
|
| 188 |
seed=seed
|
|
|
|
| 189 |
)
|
| 190 |
|
| 191 |
return modified_images[0]
|
|
@@ -196,7 +198,7 @@ def process_and_display(
|
|
| 196 |
concept_image2=None, concept_name2=None,
|
| 197 |
concept_image3=None, concept_name3=None,
|
| 198 |
rank1=30, rank2=30, rank3=30,
|
| 199 |
-
prompt=None, scale=1.0, seed=0
|
| 200 |
):
|
| 201 |
if base_image is None:
|
| 202 |
raise gr.Error("please upload a base image")
|
|
@@ -213,7 +215,7 @@ def process_and_display(
|
|
| 213 |
concept_image2, concept_name2,
|
| 214 |
concept_image3, concept_name3,
|
| 215 |
rank1, rank2, rank3,
|
| 216 |
-
prompt, scale, seed
|
| 217 |
)
|
| 218 |
|
| 219 |
return modified_images
|
|
@@ -255,6 +257,7 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
|
|
| 255 |
|
| 256 |
with gr.Accordion("Advanced options", open=False):
|
| 257 |
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
|
|
|
|
| 258 |
with gr.Row():
|
| 259 |
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
|
| 260 |
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
|
|
@@ -275,7 +278,7 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
|
|
| 275 |
concept_image2, concept_name2,
|
| 276 |
concept_image3, concept_name3,
|
| 277 |
rank1, rank2, rank3,
|
| 278 |
-
prompt, scale, seed],
|
| 279 |
outputs=[output_image],
|
| 280 |
fn=generate_examples,
|
| 281 |
cache_examples=False
|
|
@@ -292,7 +295,7 @@ following the algorithm proposed in [*IP-Composer: Semantic Composition of Visua
|
|
| 292 |
concept_image2, concept_name2,
|
| 293 |
concept_image3, concept_name3,
|
| 294 |
rank1, rank2, rank3,
|
| 295 |
-
prompt, scale, seed
|
| 296 |
],
|
| 297 |
outputs=[output_image]
|
| 298 |
)
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
examples = [
|
| 74 |
+
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 50]
|
| 75 |
|
| 76 |
]
|
| 77 |
|
|
|
|
| 80 |
concept_image2, concept_name2,
|
| 81 |
concept_image3, concept_name3,
|
| 82 |
rank1, rank2, rank3,
|
| 83 |
+
prompt, scale, seed, num_inference_steps):
|
| 84 |
return process_and_display(base_image,
|
| 85 |
concept_image1, concept_name1,
|
| 86 |
concept_image2, concept_name2,
|
| 87 |
concept_image3, concept_name3,
|
| 88 |
rank1, rank2, rank3,
|
| 89 |
+
prompt, scale, seed, num_inference_steps)
|
| 90 |
|
| 91 |
|
| 92 |
|
|
|
|
| 117 |
rank1=10, rank2=10, rank3=10,
|
| 118 |
prompt=None,
|
| 119 |
scale=1.0,
|
| 120 |
+
seed=420,
|
| 121 |
+
num_inference_steps=50,
|
| 122 |
):
|
| 123 |
"""Process the base image and concept images to generate modified images"""
|
| 124 |
# Process base image
|
|
|
|
| 187 |
scale=scale,
|
| 188 |
num_samples=1,
|
| 189 |
seed=seed
|
| 190 |
+
num_inference_steps=num_inference_steps
|
| 191 |
)
|
| 192 |
|
| 193 |
return modified_images[0]
|
|
|
|
| 198 |
concept_image2=None, concept_name2=None,
|
| 199 |
concept_image3=None, concept_name3=None,
|
| 200 |
rank1=30, rank2=30, rank3=30,
|
| 201 |
+
prompt=None, scale=1.0, seed=0, num_inference_steps=50,
|
| 202 |
):
|
| 203 |
if base_image is None:
|
| 204 |
raise gr.Error("please upload a base image")
|
|
|
|
| 215 |
concept_image2, concept_name2,
|
| 216 |
concept_image3, concept_name3,
|
| 217 |
rank1, rank2, rank3,
|
| 218 |
+
prompt, scale, seed, num_inference_steps
|
| 219 |
)
|
| 220 |
|
| 221 |
return modified_images
|
|
|
|
| 257 |
|
| 258 |
with gr.Accordion("Advanced options", open=False):
|
| 259 |
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
|
| 260 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="num steps")
|
| 261 |
with gr.Row():
|
| 262 |
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
|
| 263 |
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
|
|
|
|
| 278 |
concept_image2, concept_name2,
|
| 279 |
concept_image3, concept_name3,
|
| 280 |
rank1, rank2, rank3,
|
| 281 |
+
prompt, scale, seed, num_inference_steps],
|
| 282 |
outputs=[output_image],
|
| 283 |
fn=generate_examples,
|
| 284 |
cache_examples=False
|
|
|
|
| 295 |
concept_image2, concept_name2,
|
| 296 |
concept_image3, concept_name3,
|
| 297 |
rank1, rank2, rank3,
|
| 298 |
+
prompt, scale, seed, num_inference_steps
|
| 299 |
],
|
| 300 |
outputs=[output_image]
|
| 301 |
)
|