Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
22e4e0c
1
Parent(s):
07dcc27
update
Browse files- common.py +4 -2
- embodied_gen/models/text_model.py +10 -0
- embodied_gen/scripts/imageto3d.py +1 -1
- embodied_gen/scripts/text2image.py +6 -0
common.py
CHANGED
|
@@ -165,7 +165,7 @@ if os.getenv("GRADIO_APP") == "imageto3d":
|
|
| 165 |
RBG14_REMOVER = BMGG14Remover()
|
| 166 |
SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
|
| 167 |
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
|
| 168 |
-
"
|
| 169 |
)
|
| 170 |
# PIPELINE.cuda()
|
| 171 |
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
|
|
@@ -179,7 +179,7 @@ elif os.getenv("GRADIO_APP") == "textto3d":
|
|
| 179 |
RBG_REMOVER = RembgRemover()
|
| 180 |
RBG14_REMOVER = BMGG14Remover()
|
| 181 |
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
|
| 182 |
-
"
|
| 183 |
)
|
| 184 |
# PIPELINE.cuda()
|
| 185 |
text_model_dir = "weights/Kolors"
|
|
@@ -671,6 +671,7 @@ def text2image_fn(
|
|
| 671 |
image_wh: int | tuple[int, int] = [1024, 1024],
|
| 672 |
rmbg_tag: str = "rembg",
|
| 673 |
n_sample: int = 3,
|
|
|
|
| 674 |
req: gr.Request = None,
|
| 675 |
):
|
| 676 |
if isinstance(image_wh, int):
|
|
@@ -692,6 +693,7 @@ def text2image_fn(
|
|
| 692 |
ip_image=ip_image,
|
| 693 |
image_wh=image_wh,
|
| 694 |
infer_step=infer_step,
|
|
|
|
| 695 |
)
|
| 696 |
|
| 697 |
for idx in range(len(images)):
|
|
|
|
| 165 |
RBG14_REMOVER = BMGG14Remover()
|
| 166 |
SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
|
| 167 |
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
|
| 168 |
+
"microsoft/TRELLIS-image-large"
|
| 169 |
)
|
| 170 |
# PIPELINE.cuda()
|
| 171 |
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
|
|
|
|
| 179 |
RBG_REMOVER = RembgRemover()
|
| 180 |
RBG14_REMOVER = BMGG14Remover()
|
| 181 |
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
|
| 182 |
+
"microsoft/TRELLIS-image-large"
|
| 183 |
)
|
| 184 |
# PIPELINE.cuda()
|
| 185 |
text_model_dir = "weights/Kolors"
|
|
|
|
| 671 |
image_wh: int | tuple[int, int] = [1024, 1024],
|
| 672 |
rmbg_tag: str = "rembg",
|
| 673 |
n_sample: int = 3,
|
| 674 |
+
seed: int = None,
|
| 675 |
req: gr.Request = None,
|
| 676 |
):
|
| 677 |
if isinstance(image_wh, int):
|
|
|
|
| 693 |
ip_image=ip_image,
|
| 694 |
image_wh=image_wh,
|
| 695 |
infer_step=infer_step,
|
| 696 |
+
seed=seed,
|
| 697 |
)
|
| 698 |
|
| 699 |
for idx in range(len(images)):
|
embodied_gen/models/text_model.py
CHANGED
|
@@ -18,6 +18,8 @@
|
|
| 18 |
import logging
|
| 19 |
|
| 20 |
import torch
|
|
|
|
|
|
|
| 21 |
from diffusers import (
|
| 22 |
AutoencoderKL,
|
| 23 |
EulerDiscreteScheduler,
|
|
@@ -138,11 +140,18 @@ def text2img_gen(
|
|
| 138 |
image_wh: tuple[int, int] = [1024, 1024],
|
| 139 |
infer_step: int = 50,
|
| 140 |
ip_image_size: int = 512,
|
|
|
|
| 141 |
) -> list[Image.Image]:
|
| 142 |
prompt = "Single " + prompt + ", in the center of the image"
|
| 143 |
prompt += ", high quality, high resolution, best quality, white background, 3D style," # noqa
|
| 144 |
logger.info(f"Processing prompt: {prompt}")
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
kwargs = dict(
|
| 147 |
prompt=prompt,
|
| 148 |
height=image_wh[1],
|
|
@@ -150,6 +159,7 @@ def text2img_gen(
|
|
| 150 |
num_inference_steps=infer_step,
|
| 151 |
guidance_scale=guidance_scale,
|
| 152 |
num_images_per_prompt=n_sample,
|
|
|
|
| 153 |
)
|
| 154 |
if ip_image is not None:
|
| 155 |
if isinstance(ip_image, str):
|
|
|
|
| 18 |
import logging
|
| 19 |
|
| 20 |
import torch
|
| 21 |
+
import numpy as np
|
| 22 |
+
import random
|
| 23 |
from diffusers import (
|
| 24 |
AutoencoderKL,
|
| 25 |
EulerDiscreteScheduler,
|
|
|
|
| 140 |
image_wh: tuple[int, int] = [1024, 1024],
|
| 141 |
infer_step: int = 50,
|
| 142 |
ip_image_size: int = 512,
|
| 143 |
+
seed: int = None,
|
| 144 |
) -> list[Image.Image]:
|
| 145 |
prompt = "Single " + prompt + ", in the center of the image"
|
| 146 |
prompt += ", high quality, high resolution, best quality, white background, 3D style," # noqa
|
| 147 |
logger.info(f"Processing prompt: {prompt}")
|
| 148 |
|
| 149 |
+
if seed is not None:
|
| 150 |
+
generator = torch.Generator(pipeline.device).manual_seed(seed)
|
| 151 |
+
torch.manual_seed(seed)
|
| 152 |
+
np.random.seed(seed)
|
| 153 |
+
random.seed(seed)
|
| 154 |
+
|
| 155 |
kwargs = dict(
|
| 156 |
prompt=prompt,
|
| 157 |
height=image_wh[1],
|
|
|
|
| 159 |
num_inference_steps=infer_step,
|
| 160 |
guidance_scale=guidance_scale,
|
| 161 |
num_images_per_prompt=n_sample,
|
| 162 |
+
generator=generator,
|
| 163 |
)
|
| 164 |
if ip_image is not None:
|
| 165 |
if isinstance(ip_image, str):
|
embodied_gen/scripts/imageto3d.py
CHANGED
|
@@ -70,7 +70,7 @@ IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
|
|
| 70 |
RBG_REMOVER = RembgRemover()
|
| 71 |
RBG14_REMOVER = BMGG14Remover()
|
| 72 |
SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
|
| 73 |
-
PIPELINE = TrellisImageTo3DPipeline.from_pretrained("
|
| 74 |
PIPELINE.cuda()
|
| 75 |
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
|
| 76 |
GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
|
|
|
|
| 70 |
RBG_REMOVER = RembgRemover()
|
| 71 |
RBG14_REMOVER = BMGG14Remover()
|
| 72 |
SAM_PREDICTOR = SAMPredictor(model_type="vit_h", device="cpu")
|
| 73 |
+
PIPELINE = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
|
| 74 |
PIPELINE.cuda()
|
| 75 |
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
|
| 76 |
GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
|
embodied_gen/scripts/text2image.py
CHANGED
|
@@ -82,6 +82,11 @@ def parse_args():
|
|
| 82 |
type=int,
|
| 83 |
default=50,
|
| 84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
args = parser.parse_args()
|
| 86 |
|
| 87 |
return args
|
|
@@ -143,6 +148,7 @@ def entrypoint(
|
|
| 143 |
ip_image=ip_img_path,
|
| 144 |
image_wh=[args.resolution, args.resolution],
|
| 145 |
infer_step=args.infer_step,
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
save_paths = []
|
|
|
|
| 82 |
type=int,
|
| 83 |
default=50,
|
| 84 |
)
|
| 85 |
+
parser.add_argument(
|
| 86 |
+
"--seed",
|
| 87 |
+
type=int,
|
| 88 |
+
default=0,
|
| 89 |
+
)
|
| 90 |
args = parser.parse_args()
|
| 91 |
|
| 92 |
return args
|
|
|
|
| 148 |
ip_image=ip_img_path,
|
| 149 |
image_wh=[args.resolution, args.resolution],
|
| 150 |
infer_step=args.infer_step,
|
| 151 |
+
seed=args.seed,
|
| 152 |
)
|
| 153 |
|
| 154 |
save_paths = []
|