Spaces:
Runtime error
Runtime error
add readme
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import json
|
| 2 |
from pathlib import Path
|
| 3 |
import gradio as gr
|
|
@@ -9,6 +10,13 @@ from datatrove.io import DataFolder, get_datafolder
|
|
| 9 |
from datatrove.utils.stats import MetricStatsDict
|
| 10 |
|
| 11 |
BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
def find_folders(base_folder, path):
|
|
@@ -32,10 +40,41 @@ def find_stats_folders(base_folder: DataFolder):
|
|
| 32 |
|
| 33 |
|
| 34 |
RUNS = sorted(find_stats_folders(BASE_DATA_FOLDER))
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
def load_stats(path, stat_name, group_by):
|
|
@@ -48,23 +87,29 @@ def load_stats(path, stat_name, group_by):
|
|
| 48 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
| 49 |
|
| 50 |
|
| 51 |
-
def prepare_non_grouped_data(stats: MetricStatsDict):
|
| 52 |
-
|
| 53 |
stats_rounded = defaultdict(lambda: 0)
|
| 54 |
for key, value in stats.items():
|
| 55 |
stats_rounded[float(key)] += value.total
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
return stats_rounded
|
| 60 |
|
| 61 |
|
| 62 |
-
def prepare_grouped_data(stats: MetricStatsDict, top_k
|
|
|
|
|
|
|
| 63 |
means = {key: value.mean for key, value in stats.items()}
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
import math
|
|
@@ -72,7 +117,9 @@ import plotly.graph_objects as go
|
|
| 72 |
from plotly.offline import plot
|
| 73 |
|
| 74 |
|
| 75 |
-
def plot_scatter(
|
|
|
|
|
|
|
| 76 |
fig = go.Figure()
|
| 77 |
|
| 78 |
colors = iter(
|
|
@@ -82,6 +129,10 @@ def plot_scatter(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
| 82 |
"rgba(44, 160, 44, 0.5)",
|
| 83 |
"rgba(214, 39, 40, 0.5)",
|
| 84 |
"rgba(148, 103, 189, 0.5)",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
]
|
| 86 |
)
|
| 87 |
|
|
@@ -97,12 +148,15 @@ def plot_scatter(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
| 97 |
go.Scatter(x=x, y=y, mode="lines", name=name, line=dict(color=next(colors)))
|
| 98 |
)
|
| 99 |
|
|
|
|
|
|
|
|
|
|
| 100 |
fig.update_layout(
|
| 101 |
title=f"Line Plots for {stat_name}",
|
| 102 |
xaxis_title=stat_name,
|
| 103 |
-
yaxis_title=
|
| 104 |
-
xaxis_type=
|
| 105 |
-
width=
|
| 106 |
height=600,
|
| 107 |
)
|
| 108 |
|
|
@@ -121,23 +175,31 @@ def plot_bars(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
| 121 |
fig.update_layout(
|
| 122 |
title=f"Bar Plots for {stat_name}",
|
| 123 |
xaxis_title=stat_name,
|
| 124 |
-
yaxis_title="
|
| 125 |
autosize=True,
|
| 126 |
-
width=
|
| 127 |
height=600,
|
| 128 |
)
|
| 129 |
|
| 130 |
return fig
|
| 131 |
|
| 132 |
|
| 133 |
-
def update_graph(
|
|
|
|
|
|
|
| 134 |
if len(multiselect_crawls) <= 0 or not stat_name or not grouping:
|
| 135 |
return None
|
| 136 |
# Placeholder for logic to rerender the graph based on the inputs
|
| 137 |
prepare_fc = (
|
| 138 |
-
prepare_non_grouped_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
-
graph_fc = plot_scatter if grouping == "histogram" else plot_bars
|
| 141 |
|
| 142 |
print("Loading stats")
|
| 143 |
histograms = {
|
|
@@ -159,19 +221,54 @@ with gr.Blocks() as demo:
|
|
| 159 |
label="Multiselect for crawls",
|
| 160 |
multiselect=True,
|
| 161 |
)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
)
|
|
|
|
| 169 |
# Define the dropdown for grouping
|
| 170 |
grouping_dropdown = gr.Dropdown(
|
| 171 |
-
choices=
|
| 172 |
label="Grouping",
|
| 173 |
multiselect=False,
|
| 174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
update_button = gr.Button("Update Graph", variant="primary")
|
| 176 |
with gr.Row():
|
| 177 |
# Define the graph output
|
|
@@ -179,10 +276,47 @@ with gr.Blocks() as demo:
|
|
| 179 |
|
| 180 |
update_button.click(
|
| 181 |
fn=update_graph,
|
| 182 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
outputs=graph_output,
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
# Launch the application
|
| 188 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
import json
|
| 3 |
from pathlib import Path
|
| 4 |
import gradio as gr
|
|
|
|
| 10 |
from datatrove.utils.stats import MetricStatsDict
|
| 11 |
|
| 12 |
BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")
|
| 13 |
+
LOG_SCALE_STATS = {
|
| 14 |
+
"length",
|
| 15 |
+
"n_lines",
|
| 16 |
+
"n_docs",
|
| 17 |
+
"avg_words_per_line",
|
| 18 |
+
"pages_with_lorem_ipsum",
|
| 19 |
+
}
|
| 20 |
|
| 21 |
|
| 22 |
def find_folders(base_folder, path):
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
RUNS = sorted(find_stats_folders(BASE_DATA_FOLDER))
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def fetch_groups(runs, old_groups):
|
| 46 |
+
GROUPS = [
|
| 47 |
+
[Path(x).name for x in find_folders(BASE_DATA_FOLDER, run)] for run in runs
|
| 48 |
+
]
|
| 49 |
+
# DO the intersection
|
| 50 |
+
if len(GROUPS) == 0:
|
| 51 |
+
return gr.update(choices=[], value=None)
|
| 52 |
+
|
| 53 |
+
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
| 54 |
+
value = None
|
| 55 |
+
if old_groups:
|
| 56 |
+
value = list(set.intersection(new_choices, {old_groups}))
|
| 57 |
+
value = value[0] if value else None
|
| 58 |
+
|
| 59 |
+
# now take the intersection of all grups
|
| 60 |
+
return gr.update(choices=list(new_choices), value=value)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def fetch_stats(runs, group, old_stats):
|
| 64 |
+
STATS = [
|
| 65 |
+
[Path(x).name for x in find_folders(BASE_DATA_FOLDER, f"{run}/{group}")]
|
| 66 |
+
for run in runs
|
| 67 |
+
]
|
| 68 |
+
if len(STATS) == 0:
|
| 69 |
+
return gr.update(choices=[], value=None)
|
| 70 |
+
|
| 71 |
+
new_possibles_choices = set.intersection(*(set(s) for s in STATS))
|
| 72 |
+
value = None
|
| 73 |
+
if old_stats:
|
| 74 |
+
value = list(set.intersection(new_possibles_choices, {old_stats}))
|
| 75 |
+
value = value[0] if value else None
|
| 76 |
+
|
| 77 |
+
return gr.update(choices=list(new_possibles_choices), value=value)
|
| 78 |
|
| 79 |
|
| 80 |
def load_stats(path, stat_name, group_by):
|
|
|
|
| 87 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
| 88 |
|
| 89 |
|
| 90 |
+
def prepare_non_grouped_data(stats: MetricStatsDict, normalization):
|
|
|
|
| 91 |
stats_rounded = defaultdict(lambda: 0)
|
| 92 |
for key, value in stats.items():
|
| 93 |
stats_rounded[float(key)] += value.total
|
| 94 |
+
if normalization:
|
| 95 |
+
normalizer = sum(stats_rounded.values())
|
| 96 |
+
stats_rounded = {k: v / normalizer for k, v in stats_rounded.items()}
|
| 97 |
return stats_rounded
|
| 98 |
|
| 99 |
|
| 100 |
+
def prepare_grouped_data(stats: MetricStatsDict, top_k, direction):
|
| 101 |
+
import heapq
|
| 102 |
+
|
| 103 |
means = {key: value.mean for key, value in stats.items()}
|
| 104 |
|
| 105 |
+
# Use heap to get top_k keys
|
| 106 |
+
if direction == "Top":
|
| 107 |
+
keys = heapq.nlargest(top_k, means, key=means.get)
|
| 108 |
+
else:
|
| 109 |
+
keys = heapq.nsmallest(top_k, means, key=means.get)
|
| 110 |
+
print(keys)
|
| 111 |
+
|
| 112 |
+
return {key: means[key] for key in keys}
|
| 113 |
|
| 114 |
|
| 115 |
import math
|
|
|
|
| 117 |
from plotly.offline import plot
|
| 118 |
|
| 119 |
|
| 120 |
+
def plot_scatter(
|
| 121 |
+
histograms: dict[str, dict[float, float]], stat_name: str, normalization: bool
|
| 122 |
+
):
|
| 123 |
fig = go.Figure()
|
| 124 |
|
| 125 |
colors = iter(
|
|
|
|
| 129 |
"rgba(44, 160, 44, 0.5)",
|
| 130 |
"rgba(214, 39, 40, 0.5)",
|
| 131 |
"rgba(148, 103, 189, 0.5)",
|
| 132 |
+
"rgba(227, 119, 194, 0.5)",
|
| 133 |
+
"rgba(127, 127, 127, 0.5)",
|
| 134 |
+
"rgba(188, 189, 34, 0.5)",
|
| 135 |
+
"rgba(23, 190, 207, 0.5)",
|
| 136 |
]
|
| 137 |
)
|
| 138 |
|
|
|
|
| 148 |
go.Scatter(x=x, y=y, mode="lines", name=name, line=dict(color=next(colors)))
|
| 149 |
)
|
| 150 |
|
| 151 |
+
xaxis_scale = "log" if stat_name in LOG_SCALE_STATS else "linear"
|
| 152 |
+
yaxis_title = "Frequency" if normalization else "Total"
|
| 153 |
+
|
| 154 |
fig.update_layout(
|
| 155 |
title=f"Line Plots for {stat_name}",
|
| 156 |
xaxis_title=stat_name,
|
| 157 |
+
yaxis_title=yaxis_title,
|
| 158 |
+
xaxis_type=xaxis_scale,
|
| 159 |
+
width=1200,
|
| 160 |
height=600,
|
| 161 |
)
|
| 162 |
|
|
|
|
| 175 |
fig.update_layout(
|
| 176 |
title=f"Bar Plots for {stat_name}",
|
| 177 |
xaxis_title=stat_name,
|
| 178 |
+
yaxis_title="Mean value",
|
| 179 |
autosize=True,
|
| 180 |
+
width=1200,
|
| 181 |
height=600,
|
| 182 |
)
|
| 183 |
|
| 184 |
return fig
|
| 185 |
|
| 186 |
|
| 187 |
+
def update_graph(
|
| 188 |
+
multiselect_crawls, stat_name, grouping, normalization, top_k, direction
|
| 189 |
+
):
|
| 190 |
if len(multiselect_crawls) <= 0 or not stat_name or not grouping:
|
| 191 |
return None
|
| 192 |
# Placeholder for logic to rerender the graph based on the inputs
|
| 193 |
prepare_fc = (
|
| 194 |
+
partial(prepare_non_grouped_data, normalization=normalization)
|
| 195 |
+
if grouping == "histogram"
|
| 196 |
+
else partial(prepare_grouped_data, top_k=top_k, direction=direction)
|
| 197 |
+
)
|
| 198 |
+
graph_fc = (
|
| 199 |
+
partial(plot_scatter, normalization=normalization)
|
| 200 |
+
if grouping == "histogram"
|
| 201 |
+
else plot_bars
|
| 202 |
)
|
|
|
|
| 203 |
|
| 204 |
print("Loading stats")
|
| 205 |
histograms = {
|
|
|
|
| 221 |
label="Multiselect for crawls",
|
| 222 |
multiselect=True,
|
| 223 |
)
|
| 224 |
+
# add a readme description
|
| 225 |
+
readme_description = gr.Markdown(
|
| 226 |
+
label="Readme",
|
| 227 |
+
value="""
|
| 228 |
+
Explaination of the tool:
|
| 229 |
+
|
| 230 |
+
Groupings:
|
| 231 |
+
- histogram: creates a line plot of values with their occurences. If normalization is on, the values are frequencies summing to 1.
|
| 232 |
+
- (fqdn/suffix): creates a bar plot of the mean values of the stats for full qualied domain name/suffix of domain
|
| 233 |
+
* k: the number of groups to show
|
| 234 |
+
* Top/Bottom: the top/bottom k groups are shown
|
| 235 |
+
- summary: simply shows the average value of given stat for selected crawls
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
""",
|
| 241 |
)
|
| 242 |
+
with gr.Column(scale=1):
|
| 243 |
# Define the dropdown for grouping
|
| 244 |
grouping_dropdown = gr.Dropdown(
|
| 245 |
+
choices=[],
|
| 246 |
label="Grouping",
|
| 247 |
multiselect=False,
|
| 248 |
)
|
| 249 |
+
# Define the dropdown for stat_name
|
| 250 |
+
stat_name_dropdown = gr.Dropdown(
|
| 251 |
+
choices=[],
|
| 252 |
+
label="Stat name",
|
| 253 |
+
multiselect=False,
|
| 254 |
+
)
|
| 255 |
+
with gr.Row(visible=False) as histogram_choices:
|
| 256 |
+
normalization_checkbox = gr.Checkbox(
|
| 257 |
+
label="Normalize",
|
| 258 |
+
value=False, # Default value
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
with gr.Row(visible=False) as group_choices:
|
| 262 |
+
top_select = gr.Number(
|
| 263 |
+
label="K",
|
| 264 |
+
value=100,
|
| 265 |
+
interactive=True,
|
| 266 |
+
)
|
| 267 |
+
direction_checkbox = gr.Radio(
|
| 268 |
+
label="Partition",
|
| 269 |
+
choices=["Top", "Bottom"],
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
update_button = gr.Button("Update Graph", variant="primary")
|
| 273 |
with gr.Row():
|
| 274 |
# Define the graph output
|
|
|
|
| 276 |
|
| 277 |
update_button.click(
|
| 278 |
fn=update_graph,
|
| 279 |
+
inputs=[
|
| 280 |
+
multiselect_crawls,
|
| 281 |
+
stat_name_dropdown,
|
| 282 |
+
grouping_dropdown,
|
| 283 |
+
normalization_checkbox,
|
| 284 |
+
top_select,
|
| 285 |
+
direction_checkbox,
|
| 286 |
+
],
|
| 287 |
outputs=graph_output,
|
| 288 |
)
|
| 289 |
|
| 290 |
+
multiselect_crawls.select(
|
| 291 |
+
fn=fetch_groups,
|
| 292 |
+
inputs=[multiselect_crawls, grouping_dropdown],
|
| 293 |
+
outputs=grouping_dropdown,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
grouping_dropdown.select(
|
| 297 |
+
fn=fetch_stats,
|
| 298 |
+
inputs=[multiselect_crawls, grouping_dropdown, stat_name_dropdown],
|
| 299 |
+
outputs=stat_name_dropdown,
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
def update_grouping_options(grouping):
|
| 303 |
+
if grouping == "histogram":
|
| 304 |
+
return {
|
| 305 |
+
histogram_choices: gr.Column(visible=True),
|
| 306 |
+
group_choices: gr.Column(visible=False),
|
| 307 |
+
}
|
| 308 |
+
else:
|
| 309 |
+
return {
|
| 310 |
+
histogram_choices: gr.Column(visible=False),
|
| 311 |
+
group_choices: gr.Column(visible=True),
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
grouping_dropdown.select(
|
| 315 |
+
fn=update_grouping_options,
|
| 316 |
+
inputs=[grouping_dropdown],
|
| 317 |
+
outputs=[histogram_choices, group_choices],
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
|
| 321 |
# Launch the application
|
| 322 |
if __name__ == "__main__":
|