Spaces:
Build error
Build error
add support for split checkpoints
Browse files
app.py
CHANGED
|
@@ -19,8 +19,11 @@ def is_arary_like(x):
|
|
| 19 |
|
| 20 |
def get_task_type(df):
|
| 21 |
# Compatibility with old lighteval
|
|
|
|
| 22 |
if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]):
|
| 23 |
return "generative"
|
|
|
|
|
|
|
| 24 |
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
|
| 25 |
return "multiple_choice"
|
| 26 |
return "mixed"
|
|
@@ -44,7 +47,8 @@ def get_run_name_seed(run_name):
|
|
| 44 |
run_name, seed = run_name.split("-seed-")
|
| 45 |
return run_name, int(seed)
|
| 46 |
|
| 47 |
-
|
|
|
|
| 48 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 49 |
if oauth_token:
|
| 50 |
token = oauth_token.token
|
|
@@ -63,12 +67,16 @@ def fetch_repo_structure(results_uri, oauth_token: gr.OAuthToken | None = None):
|
|
| 63 |
results = list(executor.map(process_run, runs))
|
| 64 |
|
| 65 |
checkpoints_dict = dict(results)
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
common_checkpoints = set(checkpoints[selected_runs[0]])
|
| 74 |
for run in selected_runs[1:]:
|
|
@@ -76,7 +84,8 @@ def update_checkpoints(selected_runs, checkpoints):
|
|
| 76 |
|
| 77 |
common_checkpoints = sorted(list(common_checkpoints))
|
| 78 |
|
| 79 |
-
return gr.update(choices=common_checkpoints, value=common_checkpoints[0] if common_checkpoints else
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
def select_runs_by_regex(runs, current_selected, regex_to_select):
|
|
@@ -89,15 +98,15 @@ def select_runs_by_language(runs, current_selected, language):
|
|
| 89 |
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
|
| 90 |
return current_selected
|
| 91 |
|
| 92 |
-
def fetch_available_tasks(results_uri,
|
| 93 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 94 |
|
| 95 |
data_folder = DataFolder(results_uri, token=token)
|
| 96 |
all_tasks = defaultdict(lambda: defaultdict(dict))
|
| 97 |
|
| 98 |
-
for
|
| 99 |
try:
|
| 100 |
-
details_folder = f"details/{
|
| 101 |
files = data_folder.list_files(details_folder, recursive=True)
|
| 102 |
parquet_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet')]
|
| 103 |
|
|
@@ -105,52 +114,73 @@ def fetch_available_tasks(results_uri, runs_to_fetch, checkpoint) -> dict[str, d
|
|
| 105 |
task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1)
|
| 106 |
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
|
| 107 |
|
| 108 |
-
if
|
| 109 |
-
all_tasks[task_name][
|
| 110 |
except FileNotFoundError:
|
| 111 |
-
print(f"Checkpoint not found for run: {
|
| 112 |
-
|
| 113 |
|
|
|
|
| 114 |
available_tasks = {
|
| 115 |
-
task: {
|
| 116 |
-
for task,
|
| 117 |
-
if set(
|
| 118 |
}
|
| 119 |
|
| 120 |
return available_tasks
|
| 121 |
|
| 122 |
-
def fetch_run_results(results_uri,
|
| 123 |
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
|
| 124 |
-
task_runs_dict = fetch_available_tasks(results_uri,
|
| 125 |
task_names = list(task_runs_dict.keys())
|
| 126 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
| 127 |
|
| 128 |
|
| 129 |
-
def render_table(df,
|
| 130 |
-
if df is None or not
|
| 131 |
return None, "0"
|
| 132 |
|
| 133 |
-
kept_metrics = [f"metric_{metric_name}_{
|
|
|
|
|
|
|
| 134 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
| 135 |
df = df.drop(columns=other_metrics)
|
| 136 |
-
df = shorten_column_names(df,
|
| 137 |
|
| 138 |
# Sample 100
|
| 139 |
n_samples = len(df)
|
| 140 |
df = df.sample(n=min(100, len(df)), random_state=42)
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
def get_column_widths(df):
|
| 144 |
column_widths = []
|
| 145 |
for col in df.columns:
|
| 146 |
if col == "prompt":
|
| 147 |
-
column_widths.append("300px")
|
|
|
|
|
|
|
| 148 |
elif col in ["choices", "gold"]:
|
| 149 |
-
column_widths.append("
|
| 150 |
-
elif col.startswith("metric_"):
|
| 151 |
-
column_widths.append("50px")
|
| 152 |
else:
|
| 153 |
-
|
|
|
|
| 154 |
return column_widths
|
| 155 |
|
| 156 |
|
|
@@ -158,7 +188,7 @@ def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
|
|
| 158 |
"""
|
| 159 |
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
|
| 160 |
Turns generation_{run_name} into generation_i
|
| 161 |
-
Also truncates full_prompt
|
| 162 |
"""
|
| 163 |
# Handle metric columns
|
| 164 |
columns_to_rename = {}
|
|
@@ -175,37 +205,54 @@ def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
|
|
| 175 |
# Rename columns in a single operation
|
| 176 |
df = df.rename(columns=columns_to_rename)
|
| 177 |
|
| 178 |
-
# Add markdown formatting to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
if 'prompt' in df.columns:
|
| 180 |
-
df['prompt'] = df['prompt'].apply(
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
return df
|
| 185 |
|
| 186 |
|
| 187 |
-
def
|
|
|
|
|
|
|
|
|
|
| 188 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 189 |
-
if not
|
| 190 |
return None, None
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache")
|
| 195 |
|
| 196 |
-
def fetch_run_file(
|
| 197 |
-
file_path = f"details/{
|
| 198 |
try:
|
| 199 |
with data_folder.open(file_path, "rb") as f:
|
| 200 |
df = pd.read_parquet(f)
|
| 201 |
-
return df,
|
| 202 |
except FileNotFoundError:
|
| 203 |
-
print(f"File not found: {tasks_files[task_name][
|
| 204 |
-
return None,
|
| 205 |
|
| 206 |
with ThreadPoolExecutor() as pool:
|
| 207 |
-
results = list(progress.tqdm(pool.map(fetch_run_file,
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
dfs = [fix_df(df) for df, _ in results if df is not None]
|
| 211 |
run_names = [run for _, run in results if run is not None]
|
|
@@ -215,9 +262,20 @@ def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_file
|
|
| 215 |
|
| 216 |
task_type = get_task_type(dfs[0])
|
| 217 |
def prepare_df(df, run_name, task_type, prompt_column):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
def get_choice_predictions(df, task_type):
|
| 219 |
predictions = df['predictions']
|
| 220 |
if task_type == "generative":
|
|
|
|
|
|
|
|
|
|
| 221 |
return predictions
|
| 222 |
|
| 223 |
if task_type == "multiple_choice":
|
|
@@ -284,9 +342,10 @@ def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_file
|
|
| 284 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
| 285 |
|
| 286 |
with gr.Blocks() as demo:
|
| 287 |
-
|
| 288 |
results_df_full = gr.State(None)
|
| 289 |
tasks_files = gr.State({})
|
|
|
|
| 290 |
login_button = gr.LoginButton(visible=False)
|
| 291 |
results_uri = gr.Textbox(label="Results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True)
|
| 292 |
with gr.Column():
|
|
@@ -301,8 +360,10 @@ with gr.Blocks() as demo:
|
|
| 301 |
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
|
| 302 |
interactive=True, label="Select by language",
|
| 303 |
info="Choose a language to prefill the regex")
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
| 306 |
fetch_res = gr.Button("Fetch results")
|
| 307 |
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
|
| 308 |
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
|
|
@@ -310,7 +371,8 @@ with gr.Blocks() as demo:
|
|
| 310 |
interactive=False,
|
| 311 |
wrap=True,
|
| 312 |
line_breaks=True,
|
| 313 |
-
datatype="markdown"
|
|
|
|
| 314 |
)
|
| 315 |
with gr.Row():
|
| 316 |
with gr.Column():
|
|
@@ -319,63 +381,76 @@ with gr.Blocks() as demo:
|
|
| 319 |
|
| 320 |
# Run selection
|
| 321 |
gr.on(
|
| 322 |
-
triggers=[
|
| 323 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
)
|
| 325 |
gr.on(
|
| 326 |
triggers=[select_by_regex_button.click],
|
| 327 |
fn=select_runs_by_regex,
|
| 328 |
-
inputs=[
|
| 329 |
)
|
| 330 |
gr.on(
|
| 331 |
triggers=[select_by_language.change],
|
| 332 |
fn=select_runs_by_language,
|
| 333 |
-
inputs=[
|
| 334 |
)
|
| 335 |
|
| 336 |
# Update checkpoints based on selected runs
|
| 337 |
gr.on(
|
| 338 |
triggers=[selected_runs.change],
|
| 339 |
fn=update_checkpoints,
|
| 340 |
-
inputs=[selected_runs,
|
| 341 |
outputs=[checkpoint]
|
| 342 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
# Fetch available tasks
|
| 345 |
gr.on(
|
| 346 |
triggers=[fetch_res.click],
|
| 347 |
fn=fetch_run_results,
|
| 348 |
-
inputs=[results_uri,
|
| 349 |
outputs=[task_name, tasks_files]
|
| 350 |
).then(
|
| 351 |
fn=load_task_data,
|
| 352 |
-
inputs=[results_uri,
|
| 353 |
outputs=[results_df_full, metric_names]
|
| 354 |
).then(
|
| 355 |
fn=render_table,
|
| 356 |
-
inputs=[results_df_full,
|
| 357 |
outputs=[results_df, num_samples]
|
| 358 |
)
|
| 359 |
|
| 360 |
# Update results when task name or metric changes
|
| 361 |
gr.on(
|
| 362 |
-
triggers=[task_name.input],
|
| 363 |
fn=load_task_data,
|
| 364 |
-
inputs=[results_uri,
|
| 365 |
outputs=[results_df_full, metric_names]
|
| 366 |
).then(
|
| 367 |
fn=render_table,
|
| 368 |
-
inputs=[results_df_full,
|
| 369 |
outputs=[results_df, num_samples]
|
| 370 |
)
|
| 371 |
|
| 372 |
gr.on(
|
| 373 |
triggers=[metric_names.input],
|
| 374 |
fn=render_table,
|
| 375 |
-
inputs=[results_df_full,
|
| 376 |
outputs=[results_df, num_samples]
|
| 377 |
)
|
| 378 |
|
| 379 |
-
demo.load(fn=fetch_repo_structure, inputs=[results_uri], outputs=[
|
| 380 |
|
| 381 |
demo.launch()
|
|
|
|
| 19 |
|
| 20 |
def get_task_type(df):
|
| 21 |
# Compatibility with old lighteval
|
| 22 |
+
# [[Pour calculer le bénéfice net de C]] in new lighteval, "Pour calculer le bénéfice net de C" in old lighteval
|
| 23 |
if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]):
|
| 24 |
return "generative"
|
| 25 |
+
|
| 26 |
+
# [["1", "2"], ["3", "4"]] in new lighteval, ["1", "2"] in old lighteval
|
| 27 |
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
|
| 28 |
return "multiple_choice"
|
| 29 |
return "mixed"
|
|
|
|
| 47 |
run_name, seed = run_name.split("-seed-")
|
| 48 |
return run_name, int(seed)
|
| 49 |
|
| 50 |
+
|
| 51 |
+
def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.OAuthToken | None = None):
|
| 52 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 53 |
if oauth_token:
|
| 54 |
token = oauth_token.token
|
|
|
|
| 67 |
results = list(executor.map(process_run, runs))
|
| 68 |
|
| 69 |
checkpoints_dict = dict(results)
|
| 70 |
+
runs = list(checkpoints_dict.keys())
|
| 71 |
|
| 72 |
+
if not split_checkpoints:
|
| 73 |
+
runs = [f"{run}/{checkpoint}" for run, checkpoints in checkpoints_dict.items() for checkpoint in checkpoints]
|
| 74 |
|
| 75 |
+
return checkpoints_dict, gr.update(choices=runs, value=[])
|
| 76 |
+
|
| 77 |
+
def update_checkpoints(selected_runs, checkpoints, split_checkpoints):
|
| 78 |
+
if not selected_runs or not split_checkpoints:
|
| 79 |
+
return gr.update(choices=[], value=[])
|
| 80 |
|
| 81 |
common_checkpoints = set(checkpoints[selected_runs[0]])
|
| 82 |
for run in selected_runs[1:]:
|
|
|
|
| 84 |
|
| 85 |
common_checkpoints = sorted(list(common_checkpoints))
|
| 86 |
|
| 87 |
+
return gr.update(choices=common_checkpoints, value=[common_checkpoints[0]] if common_checkpoints else [])
|
| 88 |
+
|
| 89 |
|
| 90 |
|
| 91 |
def select_runs_by_regex(runs, current_selected, regex_to_select):
|
|
|
|
| 98 |
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
|
| 99 |
return current_selected
|
| 100 |
|
| 101 |
+
def fetch_available_tasks(results_uri, selected_run_checkpoint: list[str]) -> dict[str, dict[str, str]]:
|
| 102 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 103 |
|
| 104 |
data_folder = DataFolder(results_uri, token=token)
|
| 105 |
all_tasks = defaultdict(lambda: defaultdict(dict))
|
| 106 |
|
| 107 |
+
for run_checkpoint in selected_run_checkpoint:
|
| 108 |
try:
|
| 109 |
+
details_folder = f"details/{run_checkpoint}"
|
| 110 |
files = data_folder.list_files(details_folder, recursive=True)
|
| 111 |
parquet_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet')]
|
| 112 |
|
|
|
|
| 114 |
task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1)
|
| 115 |
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
|
| 116 |
|
| 117 |
+
if run_checkpoint not in all_tasks[task_name] or date > all_tasks[task_name][run_checkpoint]['date']:
|
| 118 |
+
all_tasks[task_name][run_checkpoint] = {'filename': full_filename, 'date': date}
|
| 119 |
except FileNotFoundError:
|
| 120 |
+
print(f"Checkpoint not found for run: {run_checkpoint}")
|
|
|
|
| 121 |
|
| 122 |
+
# Get tasks that have data for all selected runs
|
| 123 |
available_tasks = {
|
| 124 |
+
task: {run_checkpoint: info['filename'] for run_checkpoint, info in runs_info.items()}
|
| 125 |
+
for task, runs_info in all_tasks.items()
|
| 126 |
+
if set(runs_info.keys()) == set(selected_run_checkpoint)
|
| 127 |
}
|
| 128 |
|
| 129 |
return available_tasks
|
| 130 |
|
| 131 |
+
def fetch_run_results(results_uri, selected_run_checkpoint: list[str],
|
| 132 |
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
|
| 133 |
+
task_runs_dict = fetch_available_tasks(results_uri, selected_run_checkpoint)
|
| 134 |
task_names = list(task_runs_dict.keys())
|
| 135 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
| 136 |
|
| 137 |
|
| 138 |
+
def render_table(df, selected_run_checkpoint: list[str], metric_names):
|
| 139 |
+
if df is None or not selected_run_checkpoint or not metric_names:
|
| 140 |
return None, "0"
|
| 141 |
|
| 142 |
+
kept_metrics = [f"metric_{metric_name}_{run_checkpoint}"
|
| 143 |
+
for run_checkpoint in selected_run_checkpoint
|
| 144 |
+
for metric_name in metric_names]
|
| 145 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
| 146 |
df = df.drop(columns=other_metrics)
|
| 147 |
+
df = shorten_column_names(df, selected_run_checkpoint, metric_names)
|
| 148 |
|
| 149 |
# Sample 100
|
| 150 |
n_samples = len(df)
|
| 151 |
df = df.sample(n=min(100, len(df)), random_state=42)
|
| 152 |
+
|
| 153 |
+
# Get column widths for better display
|
| 154 |
+
column_widths = get_column_widths(df)
|
| 155 |
+
return gr.Dataframe(
|
| 156 |
+
value=df,
|
| 157 |
+
column_widths=column_widths
|
| 158 |
+
), str(n_samples)
|
| 159 |
+
|
| 160 |
+
def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool):
|
| 161 |
+
if not selected_runs:
|
| 162 |
+
return []
|
| 163 |
+
|
| 164 |
+
# In this case we simply return the selected runs which already contain checkpoints
|
| 165 |
+
if not split_checkpoints:
|
| 166 |
+
return selected_runs
|
| 167 |
+
|
| 168 |
+
# Otherwise combine runs with checkpoints
|
| 169 |
+
return [f"{run}/{checkpoint}" for run in selected_runs for checkpoint in (selected_checkpoint if selected_checkpoint else [])]
|
| 170 |
+
|
| 171 |
|
| 172 |
def get_column_widths(df):
|
| 173 |
column_widths = []
|
| 174 |
for col in df.columns:
|
| 175 |
if col == "prompt":
|
| 176 |
+
column_widths.append("300px") # Fixed width with overflow
|
| 177 |
+
elif col.startswith("generation_"):
|
| 178 |
+
column_widths.append("200px")
|
| 179 |
elif col in ["choices", "gold"]:
|
| 180 |
+
column_widths.append("100px")
|
|
|
|
|
|
|
| 181 |
else:
|
| 182 |
+
# Metrics
|
| 183 |
+
column_widths.append("50px") # Default width for other columns
|
| 184 |
return column_widths
|
| 185 |
|
| 186 |
|
|
|
|
| 188 |
"""
|
| 189 |
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
|
| 190 |
Turns generation_{run_name} into generation_i
|
| 191 |
+
Also truncates full_prompt and generation columns to 100 chars with expandable view
|
| 192 |
"""
|
| 193 |
# Handle metric columns
|
| 194 |
columns_to_rename = {}
|
|
|
|
| 205 |
# Rename columns in a single operation
|
| 206 |
df = df.rename(columns=columns_to_rename)
|
| 207 |
|
| 208 |
+
# Add markdown formatting to prompt and generation columns for truncation with expansion
|
| 209 |
+
def truncate_with_details(text: str | list[str]):
|
| 210 |
+
if is_arary_like(text) and all(isinstance(item, str) for item in text):
|
| 211 |
+
return [truncate_with_details(item) for item in text]
|
| 212 |
+
elif isinstance(text, str):
|
| 213 |
+
text = text.replace('\n', ' ').strip() # Replace newlines with spaces
|
| 214 |
+
if len(text) <= 100:
|
| 215 |
+
return text
|
| 216 |
+
return f"""<details><summary>{text[:100]}...</summary>\n\n{text[100:]}</details>"""
|
| 217 |
+
|
| 218 |
+
return text
|
| 219 |
+
|
| 220 |
if 'prompt' in df.columns:
|
| 221 |
+
df['prompt'] = df['prompt'].apply(truncate_with_details)
|
| 222 |
+
|
| 223 |
+
# Apply the same truncation to all generation columns
|
| 224 |
+
generation_columns = [col for col in df.columns if col.startswith('generation_')]
|
| 225 |
+
|
| 226 |
+
for col in generation_columns:
|
| 227 |
+
df[col] = df[col].apply(truncate_with_details)
|
| 228 |
|
| 229 |
return df
|
| 230 |
|
| 231 |
|
| 232 |
+
def unwrap_selected_run_checkpoint(selected_run_checkpoint: list[str]) -> list[str]:
|
| 233 |
+
return selected_run_checkpoint # Now just returns the list directly
|
| 234 |
+
|
| 235 |
+
def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, tasks_files, prompt_column, progress=gr.Progress()):
|
| 236 |
token = os.environ.get(FALLBACK_TOKEN_NAME)
|
| 237 |
+
if not selected_run_checkpoint or not task_name:
|
| 238 |
return None, None
|
| 239 |
|
|
|
|
|
|
|
| 240 |
data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache")
|
| 241 |
|
| 242 |
+
def fetch_run_file(run_checkpoint):
|
| 243 |
+
file_path = f"details/{run_checkpoint}/{tasks_files[task_name][run_checkpoint]}"
|
| 244 |
try:
|
| 245 |
with data_folder.open(file_path, "rb") as f:
|
| 246 |
df = pd.read_parquet(f)
|
| 247 |
+
return df, run_checkpoint
|
| 248 |
except FileNotFoundError:
|
| 249 |
+
print(f"File not found: {tasks_files[task_name][run_checkpoint]}")
|
| 250 |
+
return None, run_checkpoint
|
| 251 |
|
| 252 |
with ThreadPoolExecutor() as pool:
|
| 253 |
+
results = list(progress.tqdm(pool.map(fetch_run_file, selected_run_checkpoint),
|
| 254 |
+
total=len(selected_run_checkpoint),
|
| 255 |
+
desc="Fetching run data..."))
|
| 256 |
|
| 257 |
dfs = [fix_df(df) for df, _ in results if df is not None]
|
| 258 |
run_names = [run for _, run in results if run is not None]
|
|
|
|
| 262 |
|
| 263 |
task_type = get_task_type(dfs[0])
|
| 264 |
def prepare_df(df, run_name, task_type, prompt_column):
|
| 265 |
+
# Mixed in lighteval-old will look like this: ['광', -13.964999198913574, -13.539217948913574, -13.964999198913574, -13.539217948913574, -12.90467357635498, -13.07825756072998]
|
| 266 |
+
# Generative in lighteval-old will look like this "prediction"
|
| 267 |
+
# Multiple choice in lighteval-old will look like this ["choice1", "choice2"]
|
| 268 |
+
# [np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-128.63824462890625), np.float64(-203.9550018310547), np.float64(-185.35267639160156), np.float64(-228.23837280273438)]
|
| 269 |
+
|
| 270 |
+
# For the new lighteval we have:
|
| 271 |
+
# Generative: [[Pour calculer le bénéfice net de C]]
|
| 272 |
+
|
| 273 |
def get_choice_predictions(df, task_type):
|
| 274 |
predictions = df['predictions']
|
| 275 |
if task_type == "generative":
|
| 276 |
+
# This is strange representation in new lighteval...
|
| 277 |
+
if is_arary_like(predictions) and all(is_arary_like(item) for item in predictions):
|
| 278 |
+
return predictions[0]
|
| 279 |
return predictions
|
| 280 |
|
| 281 |
if task_type == "multiple_choice":
|
|
|
|
| 342 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
| 343 |
|
| 344 |
with gr.Blocks() as demo:
|
| 345 |
+
available_runs_checkpoints = gr.State({})
|
| 346 |
results_df_full = gr.State(None)
|
| 347 |
tasks_files = gr.State({})
|
| 348 |
+
selected_run_checkpoint = gr.State([])
|
| 349 |
login_button = gr.LoginButton(visible=False)
|
| 350 |
results_uri = gr.Textbox(label="Results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True)
|
| 351 |
with gr.Column():
|
|
|
|
| 360 |
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
|
| 361 |
interactive=True, label="Select by language",
|
| 362 |
info="Choose a language to prefill the regex")
|
| 363 |
+
with gr.Row() as run_selection_row:
|
| 364 |
+
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
|
| 365 |
+
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", multiselect=True)
|
| 366 |
+
|
| 367 |
fetch_res = gr.Button("Fetch results")
|
| 368 |
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
|
| 369 |
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
|
|
|
|
| 371 |
interactive=False,
|
| 372 |
wrap=True,
|
| 373 |
line_breaks=True,
|
| 374 |
+
datatype="markdown",
|
| 375 |
+
column_widths=get_column_widths(pd.DataFrame()) # Initialize with empty dataframe
|
| 376 |
)
|
| 377 |
with gr.Row():
|
| 378 |
with gr.Column():
|
|
|
|
| 381 |
|
| 382 |
# Run selection
|
| 383 |
gr.on(
|
| 384 |
+
triggers=[split_checkpoints.change],
|
| 385 |
+
fn=lambda split_checkpoints: gr.update(visible=split_checkpoints),
|
| 386 |
+
inputs=[split_checkpoints],
|
| 387 |
+
outputs=[checkpoint]
|
| 388 |
+
)
|
| 389 |
+
gr.on(
|
| 390 |
+
triggers=[results_uri.change, split_checkpoints.change],
|
| 391 |
+
fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs],
|
| 392 |
)
|
| 393 |
gr.on(
|
| 394 |
triggers=[select_by_regex_button.click],
|
| 395 |
fn=select_runs_by_regex,
|
| 396 |
+
inputs=[available_runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
|
| 397 |
)
|
| 398 |
gr.on(
|
| 399 |
triggers=[select_by_language.change],
|
| 400 |
fn=select_runs_by_language,
|
| 401 |
+
inputs=[available_runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
|
| 402 |
)
|
| 403 |
|
| 404 |
# Update checkpoints based on selected runs
|
| 405 |
gr.on(
|
| 406 |
triggers=[selected_runs.change],
|
| 407 |
fn=update_checkpoints,
|
| 408 |
+
inputs=[selected_runs, available_runs_checkpoints, split_checkpoints],
|
| 409 |
outputs=[checkpoint]
|
| 410 |
)
|
| 411 |
+
|
| 412 |
+
gr.on(
|
| 413 |
+
triggers=[checkpoint.change, selected_runs.change],
|
| 414 |
+
fn=update_selected_run_checkpoint,
|
| 415 |
+
inputs=[selected_runs, checkpoint, split_checkpoints],
|
| 416 |
+
outputs=[selected_run_checkpoint]
|
| 417 |
+
)
|
| 418 |
|
| 419 |
# Fetch available tasks
|
| 420 |
gr.on(
|
| 421 |
triggers=[fetch_res.click],
|
| 422 |
fn=fetch_run_results,
|
| 423 |
+
inputs=[results_uri, selected_run_checkpoint],
|
| 424 |
outputs=[task_name, tasks_files]
|
| 425 |
).then(
|
| 426 |
fn=load_task_data,
|
| 427 |
+
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
|
| 428 |
outputs=[results_df_full, metric_names]
|
| 429 |
).then(
|
| 430 |
fn=render_table,
|
| 431 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 432 |
outputs=[results_df, num_samples]
|
| 433 |
)
|
| 434 |
|
| 435 |
# Update results when task name or metric changes
|
| 436 |
gr.on(
|
| 437 |
+
triggers=[task_name.input, prompt_column.input],
|
| 438 |
fn=load_task_data,
|
| 439 |
+
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
|
| 440 |
outputs=[results_df_full, metric_names]
|
| 441 |
).then(
|
| 442 |
fn=render_table,
|
| 443 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 444 |
outputs=[results_df, num_samples]
|
| 445 |
)
|
| 446 |
|
| 447 |
gr.on(
|
| 448 |
triggers=[metric_names.input],
|
| 449 |
fn=render_table,
|
| 450 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 451 |
outputs=[results_df, num_samples]
|
| 452 |
)
|
| 453 |
|
| 454 |
+
demo.load(fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs])
|
| 455 |
|
| 456 |
demo.launch()
|