Spaces:
Runtime error
Runtime error
init
Browse files- app.py +31 -0
- interaction.py +146 -0
- requirements.txt +2 -0
- utils.py +654 -0
app.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import uvicorn
|
| 4 |
+
import socket
|
| 5 |
+
from interaction import MindBot
|
| 6 |
+
|
| 7 |
+
CUSTOM_PATH = "/mindbot/541832"
|
| 8 |
+
|
| 9 |
+
# @app.get("/")
|
| 10 |
+
# def read_main():
|
| 11 |
+
# return {"message": "This is your main app"}
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
mind_bot = MindBot(
|
| 15 |
+
"/cognitive_comp/songchao/mindbot_demo/checkpoint",
|
| 16 |
+
"/cognitive_comp/songchao/checkpoints/13B-c-pretrain-tokenizer",
|
| 17 |
+
if_int8=True
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# @app.get("/api/mindbot/541832")
|
| 22 |
+
# async def chat(query, clear_history=False):
|
| 23 |
+
# output = mind_bot.common_generate(query, clear_history)
|
| 24 |
+
# return output
|
| 25 |
+
# host = socket.gethostbyname(socket.gethostname())
|
| 26 |
+
# print(f'demo run on {host}')
|
| 27 |
+
demo = mind_bot.new_chat_bot()
|
| 28 |
+
demo.launch(share=True)
|
| 29 |
+
|
| 30 |
+
# app = gr.mount_gradio_app(app, demo, path=CUSTOM_PATH)
|
| 31 |
+
# uvicorn.run(app, host='192.168.81.9', port=7880)
|
interaction.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import argparse
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
| 9 |
+
from utils import SteamGenerationMixin
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MindBot(object):
|
| 13 |
+
def __init__(self, model_path, tokenizer_path,if_int8=False):
|
| 14 |
+
# self.device = torch.device("cuda")
|
| 15 |
+
# device_ids = [1, 2]
|
| 16 |
+
if if_int8:
|
| 17 |
+
self.model = SteamGenerationMixin.from_pretrained(model_path, device_map='auto', load_in_8bit=True).eval()
|
| 18 |
+
else:
|
| 19 |
+
self.model = SteamGenerationMixin.from_pretrained(model_path, device_map='auto').half().eval()
|
| 20 |
+
|
| 21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 22 |
+
# sp_tokens = {'additional_special_tokens': ['<human>', '<bot>']}
|
| 23 |
+
# self.tokenizer.add_special_tokens(sp_tokens)
|
| 24 |
+
self.history = []
|
| 25 |
+
|
| 26 |
+
def build_prompt(self, instruction, history, human='<human>', bot='<bot>'):
|
| 27 |
+
pmt = ''
|
| 28 |
+
if len(history) > 0:
|
| 29 |
+
for line in history:
|
| 30 |
+
pmt += f'{human}: {line[0].strip()}\n{bot}: {line[1]}\n'
|
| 31 |
+
pmt += f'{human}: {instruction.strip()}\n{bot}: \n'
|
| 32 |
+
return pmt
|
| 33 |
+
|
| 34 |
+
def common_generate(self, instruction, clear_history=False, max_memory=1024):
|
| 35 |
+
if clear_history:
|
| 36 |
+
self.history = []
|
| 37 |
+
|
| 38 |
+
prompt = self.build_prompt(instruction, self.history)
|
| 39 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
|
| 40 |
+
if input_ids.shape[1] > max_memory:
|
| 41 |
+
input_ids = input_ids[:, -max_memory:]
|
| 42 |
+
|
| 43 |
+
prompt_len = input_ids.shape[1]
|
| 44 |
+
# common method
|
| 45 |
+
generation_output = self.model.generate(
|
| 46 |
+
input_ids.cuda(),
|
| 47 |
+
max_new_tokens=1024,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
top_p=0.85,
|
| 50 |
+
temperature=0.8,
|
| 51 |
+
repetition_penalty=1.,
|
| 52 |
+
eos_token_id=2,
|
| 53 |
+
bos_token_id=1,
|
| 54 |
+
pad_token_id=0
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
s = generation_output[0][prompt_len:]
|
| 58 |
+
output = self.tokenizer.decode(s, skip_special_tokens=True)
|
| 59 |
+
# output = output
|
| 60 |
+
output = output.replace("Belle", "IDEA")
|
| 61 |
+
self.history.append((instruction, output))
|
| 62 |
+
print('api history: ======> \n', self.history)
|
| 63 |
+
|
| 64 |
+
return output
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def interaction(
|
| 68 |
+
self,
|
| 69 |
+
instruction,
|
| 70 |
+
history,
|
| 71 |
+
max_memory=1024
|
| 72 |
+
):
|
| 73 |
+
|
| 74 |
+
prompt = self.build_prompt(instruction, history)
|
| 75 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
|
| 76 |
+
if input_ids.shape[1] > max_memory:
|
| 77 |
+
input_ids = input_ids[:, -max_memory:]
|
| 78 |
+
|
| 79 |
+
prompt_len = input_ids.shape[1]
|
| 80 |
+
# stream generation method
|
| 81 |
+
try:
|
| 82 |
+
tmp = history.copy()
|
| 83 |
+
output = ''
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
for generation_output in self.model.stream_generate(
|
| 86 |
+
input_ids.cuda(),
|
| 87 |
+
max_new_tokens=1024,
|
| 88 |
+
do_sample=True,
|
| 89 |
+
top_p=0.85,
|
| 90 |
+
temperature=0.8,
|
| 91 |
+
repetition_penalty=1.,
|
| 92 |
+
eos_token_id=2,
|
| 93 |
+
bos_token_id=1,
|
| 94 |
+
pad_token_id=0
|
| 95 |
+
):
|
| 96 |
+
s = generation_output[0][prompt_len:]
|
| 97 |
+
output = self.tokenizer.decode(s, skip_special_tokens=True)
|
| 98 |
+
output = output.replace('\n', '<br>')
|
| 99 |
+
tmp.append((instruction, output))
|
| 100 |
+
yield '', tmp
|
| 101 |
+
tmp.pop()
|
| 102 |
+
# gc.collect()
|
| 103 |
+
# torch.cuda.empty_cache()
|
| 104 |
+
history.append((instruction, output))
|
| 105 |
+
print('input -----> \n', prompt)
|
| 106 |
+
print('output -------> \n', output)
|
| 107 |
+
print('history: ======> \n', history)
|
| 108 |
+
except torch.cuda.OutOfMemoryError:
|
| 109 |
+
gc.collect()
|
| 110 |
+
torch.cuda.empty_cache()
|
| 111 |
+
self.model.empty_cache()
|
| 112 |
+
return "", history
|
| 113 |
+
|
| 114 |
+
def new_chat_bot(self):
|
| 115 |
+
|
| 116 |
+
with gr.Blocks(title='IDEA MindBot', css=".gradio-container {max-width: 50% !important;} .bgcolor {color: white !important; background: #FFA500 !important;}") as demo:
|
| 117 |
+
gr.Markdown("<center><h1>IDEA MindBot</h1></center>")
|
| 118 |
+
gr.Markdown("<center>本页面基于hugging face支持的设备搭建</center>")
|
| 119 |
+
with gr.Row():
|
| 120 |
+
chatbot = gr.Chatbot(label='MindBot').style(height=500)
|
| 121 |
+
with gr.Row():
|
| 122 |
+
msg = gr.Textbox(label="Input")
|
| 123 |
+
with gr.Row():
|
| 124 |
+
with gr.Column(scale=0.5):
|
| 125 |
+
clear = gr.Button("Clear")
|
| 126 |
+
with gr.Column(scale=0.5):
|
| 127 |
+
submit = gr.Button("Submit", elem_classes='bgcolor')
|
| 128 |
+
|
| 129 |
+
msg.submit(self.interaction, [msg, chatbot], [msg, chatbot])
|
| 130 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 131 |
+
submit.click(self.interaction, [msg, chatbot], [msg, chatbot])
|
| 132 |
+
return demo.queue(concurrency_count=5)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
if __name__ == '__main__':
|
| 136 |
+
parser = argparse.ArgumentParser()
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
"--model_path",
|
| 139 |
+
type=str,
|
| 140 |
+
default="/cognitive_comp/songchao/checkpoints/global_step3200-hf"
|
| 141 |
+
)
|
| 142 |
+
args = parser.parse_args()
|
| 143 |
+
|
| 144 |
+
mind_bot = MindBot(args.model_path)
|
| 145 |
+
demo = mind_bot.new_chat_bot()
|
| 146 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.12.1
|
| 2 |
+
transformers==4.28.1
|
utils.py
ADDED
|
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Optional, Tuple, Union, List, Callable
|
| 3 |
+
from transformers.generation.logits_process import LogitsProcessor
|
| 4 |
+
from transformers.generation.beam_search import BeamSearchScorer
|
| 5 |
+
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
| 6 |
+
from transformers.generation.utils import (
|
| 7 |
+
LogitsProcessorList,
|
| 8 |
+
StoppingCriteriaList,
|
| 9 |
+
GenerationConfig,
|
| 10 |
+
GenerationMixin,
|
| 11 |
+
)
|
| 12 |
+
from transformers import LlamaForCausalLM
|
| 13 |
+
import warnings
|
| 14 |
+
import torch.distributed as dist
|
| 15 |
+
from torch import nn
|
| 16 |
+
import copy
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SteamGenerationMixin(LlamaForCausalLM):
|
| 20 |
+
# support for streamly generation
|
| 21 |
+
# TODO: group_beam_search
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
def stream_generate(
|
| 24 |
+
self,
|
| 25 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 26 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 27 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 28 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 29 |
+
prefix_allowed_tokens_fn: Optional[
|
| 30 |
+
Callable[[int, torch.Tensor], List[int]]
|
| 31 |
+
] = None,
|
| 32 |
+
**kwargs,
|
| 33 |
+
):
|
| 34 |
+
self._reorder_cache = self.base_model._reorder_cache
|
| 35 |
+
if is_deepspeed_zero3_enabled() and dist.world_size() > 1:
|
| 36 |
+
synced_gpus = True
|
| 37 |
+
else:
|
| 38 |
+
synced_gpus = False
|
| 39 |
+
|
| 40 |
+
if kwargs.get("attention_mask", None) is not None:
|
| 41 |
+
# concat prompt attention mask
|
| 42 |
+
prefix_attention_mask = torch.ones(
|
| 43 |
+
kwargs["input_ids"].shape[0], self.peft_config.num_virtual_tokens
|
| 44 |
+
).to(kwargs["input_ids"].device)
|
| 45 |
+
kwargs["attention_mask"] = torch.cat(
|
| 46 |
+
(prefix_attention_mask, kwargs["attention_mask"]), dim=1
|
| 47 |
+
)
|
| 48 |
+
if kwargs.get("position_ids", None) is not None:
|
| 49 |
+
warnings.warn(
|
| 50 |
+
"Position ids are not supported for parameter efficient tuning. Ignoring position ids."
|
| 51 |
+
)
|
| 52 |
+
kwargs["position_ids"] = None
|
| 53 |
+
if kwargs.get("token_type_ids", None) is not None:
|
| 54 |
+
warnings.warn(
|
| 55 |
+
"Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
|
| 56 |
+
)
|
| 57 |
+
kwargs["token_type_ids"] = None
|
| 58 |
+
|
| 59 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
| 60 |
+
|
| 61 |
+
if generation_config is None:
|
| 62 |
+
generation_config = self.generation_config
|
| 63 |
+
generation_config = copy.deepcopy(generation_config)
|
| 64 |
+
model_kwargs = generation_config.update(**kwargs)
|
| 65 |
+
|
| 66 |
+
bos_token_id, eos_token_id, pad_token_id = (
|
| 67 |
+
generation_config.bos_token_id,
|
| 68 |
+
generation_config.eos_token_id,
|
| 69 |
+
generation_config.pad_token_id,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if isinstance(eos_token_id, int):
|
| 73 |
+
eos_token_id = [eos_token_id]
|
| 74 |
+
|
| 75 |
+
has_default_max_length = (
|
| 76 |
+
kwargs.get("max_length") is None
|
| 77 |
+
and generation_config.max_length is not None
|
| 78 |
+
)
|
| 79 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
| 80 |
+
warnings.warn(
|
| 81 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
| 82 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
| 83 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
| 84 |
+
UserWarning,
|
| 85 |
+
)
|
| 86 |
+
elif generation_config.max_new_tokens is not None:
|
| 87 |
+
generation_config.max_length = (
|
| 88 |
+
generation_config.max_new_tokens + input_ids_seq_length
|
| 89 |
+
)
|
| 90 |
+
if generation_config.min_new_tokens is not None:
|
| 91 |
+
generation_config.min_length = (
|
| 92 |
+
generation_config.min_new_tokens + input_ids_seq_length
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if input_ids_seq_length >= generation_config.max_length:
|
| 96 |
+
input_ids_string = (
|
| 97 |
+
"decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# 2. Set generation parameters if not already defined
|
| 101 |
+
logits_processor = (
|
| 102 |
+
logits_processor if logits_processor is not None else LogitsProcessorList()
|
| 103 |
+
)
|
| 104 |
+
stopping_criteria = (
|
| 105 |
+
stopping_criteria
|
| 106 |
+
if stopping_criteria is not None
|
| 107 |
+
else StoppingCriteriaList()
|
| 108 |
+
)
|
| 109 |
+
# 7. determine generation mode
|
| 110 |
+
is_constraint_gen_mode = (
|
| 111 |
+
generation_config.constraints is not None or generation_config.force_words_ids is not None
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
is_contrastive_search_gen_mode = (
|
| 115 |
+
generation_config.top_k is not None
|
| 116 |
+
and generation_config.top_k > 1
|
| 117 |
+
and generation_config.do_sample is False
|
| 118 |
+
and generation_config.penalty_alpha is not None
|
| 119 |
+
and generation_config.penalty_alpha > 0
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
is_greedy_gen_mode = (
|
| 123 |
+
(generation_config.num_beams == 1)
|
| 124 |
+
and (generation_config.num_beam_groups == 1)
|
| 125 |
+
and generation_config.do_sample is False
|
| 126 |
+
and not is_constraint_gen_mode
|
| 127 |
+
and not is_contrastive_search_gen_mode
|
| 128 |
+
)
|
| 129 |
+
# beam=1 and do_sample=True
|
| 130 |
+
is_sample_gen_mode = (
|
| 131 |
+
(generation_config.num_beams == 1)
|
| 132 |
+
and (generation_config.num_beam_groups == 1)
|
| 133 |
+
and generation_config.do_sample is True
|
| 134 |
+
and not is_constraint_gen_mode
|
| 135 |
+
and not is_contrastive_search_gen_mode
|
| 136 |
+
)
|
| 137 |
+
is_beam_gen_mode = (
|
| 138 |
+
(generation_config.num_beams > 1)
|
| 139 |
+
and (generation_config.num_beam_groups == 1)
|
| 140 |
+
and generation_config.do_sample is False
|
| 141 |
+
and not is_constraint_gen_mode
|
| 142 |
+
and not is_contrastive_search_gen_mode
|
| 143 |
+
)
|
| 144 |
+
is_beam_sample_gen_mode = (
|
| 145 |
+
(generation_config.num_beams > 1)
|
| 146 |
+
and (generation_config.num_beam_groups == 1)
|
| 147 |
+
and generation_config.do_sample is True
|
| 148 |
+
and not is_constraint_gen_mode
|
| 149 |
+
and not is_contrastive_search_gen_mode
|
| 150 |
+
)
|
| 151 |
+
is_group_beam_gen_mode = (
|
| 152 |
+
(generation_config.num_beams > 1)
|
| 153 |
+
and (generation_config.num_beam_groups > 1)
|
| 154 |
+
and not is_constraint_gen_mode
|
| 155 |
+
and not is_contrastive_search_gen_mode
|
| 156 |
+
)
|
| 157 |
+
# 8. prepare distribution pre_processing samplers
|
| 158 |
+
logits_processor = self._get_logits_processor(
|
| 159 |
+
generation_config=generation_config,
|
| 160 |
+
input_ids_seq_length=input_ids_seq_length,
|
| 161 |
+
encoder_input_ids=input_ids,
|
| 162 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 163 |
+
logits_processor=logits_processor,
|
| 164 |
+
)
|
| 165 |
+
# 9. prepare stopping criteria
|
| 166 |
+
stopping_criteria = self._get_stopping_criteria(
|
| 167 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
| 168 |
+
)
|
| 169 |
+
logits_warper = self._get_logits_warper(generation_config)
|
| 170 |
+
|
| 171 |
+
if is_greedy_gen_mode:
|
| 172 |
+
# 11. run greedy search
|
| 173 |
+
return self.greedy_search(
|
| 174 |
+
input_ids,
|
| 175 |
+
logits_processor,
|
| 176 |
+
stopping_criteria,
|
| 177 |
+
generation_config,
|
| 178 |
+
synced_gpus,
|
| 179 |
+
**model_kwargs,
|
| 180 |
+
)
|
| 181 |
+
elif is_sample_gen_mode:
|
| 182 |
+
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
| 183 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 184 |
+
input_ids=input_ids,
|
| 185 |
+
expand_size=generation_config.num_return_sequences,
|
| 186 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 187 |
+
**model_kwargs,
|
| 188 |
+
)
|
| 189 |
+
return self.stream_sample(
|
| 190 |
+
generation_config,
|
| 191 |
+
input_ids,
|
| 192 |
+
logits_processor,
|
| 193 |
+
logits_warper,
|
| 194 |
+
stopping_criteria,
|
| 195 |
+
synced_gpus,
|
| 196 |
+
**model_kwargs,
|
| 197 |
+
)
|
| 198 |
+
elif is_beam_gen_mode:
|
| 199 |
+
return self.beam_search(
|
| 200 |
+
generation_config,
|
| 201 |
+
input_ids,
|
| 202 |
+
logits_processor,
|
| 203 |
+
stopping_criteria,
|
| 204 |
+
synced_gpus,
|
| 205 |
+
**model_kwargs,
|
| 206 |
+
)
|
| 207 |
+
elif is_beam_sample_gen_mode:
|
| 208 |
+
# interleave input_ids with `num_beams` additional sequences per batch
|
| 209 |
+
return self.beam_sample(
|
| 210 |
+
input_ids,
|
| 211 |
+
logits_processor,
|
| 212 |
+
logits_warper,
|
| 213 |
+
stopping_criteria,
|
| 214 |
+
generation_config,
|
| 215 |
+
synced_gpus,
|
| 216 |
+
**model_kwargs,
|
| 217 |
+
)
|
| 218 |
+
else:
|
| 219 |
+
raise Exception('not implement')
|
| 220 |
+
|
| 221 |
+
def stream_sample(
|
| 222 |
+
self,
|
| 223 |
+
generation_config,
|
| 224 |
+
input_ids,
|
| 225 |
+
logits_processor,
|
| 226 |
+
logits_warper,
|
| 227 |
+
stopping_criteria,
|
| 228 |
+
synced_gpus,
|
| 229 |
+
**model_kwargs,
|
| 230 |
+
):
|
| 231 |
+
bos_token_id, eos_token_id, pad_token_id = (
|
| 232 |
+
generation_config.bos_token_id,
|
| 233 |
+
generation_config.eos_token_id,
|
| 234 |
+
generation_config.pad_token_id,
|
| 235 |
+
)
|
| 236 |
+
if isinstance(eos_token_id, int):
|
| 237 |
+
eos_token_id = [eos_token_id]
|
| 238 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
| 239 |
+
# keep track of which sequences are already finished
|
| 240 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
| 241 |
+
this_peer_finished = False # used by synced_gpus only
|
| 242 |
+
scores=()
|
| 243 |
+
# auto-regressive generation
|
| 244 |
+
while True:
|
| 245 |
+
if synced_gpus:
|
| 246 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
| 247 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
| 248 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
| 249 |
+
# send 0.0 if we finished, 1.0 otherwise
|
| 250 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
| 251 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
| 252 |
+
if this_peer_finished_flag.item() == 0.0:
|
| 253 |
+
break
|
| 254 |
+
# prepare model inputs
|
| 255 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 256 |
+
# forward pass to get next token
|
| 257 |
+
outputs = self(
|
| 258 |
+
**model_inputs,
|
| 259 |
+
return_dict=True,
|
| 260 |
+
)
|
| 261 |
+
if synced_gpus and this_peer_finished:
|
| 262 |
+
continue # don't waste resources running the code we don't need
|
| 263 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 264 |
+
# pre-process distribution
|
| 265 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 266 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
| 267 |
+
|
| 268 |
+
# sample
|
| 269 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 270 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 271 |
+
|
| 272 |
+
# finished sentences should have their next token be a padding token
|
| 273 |
+
if eos_token_id is not None:
|
| 274 |
+
if pad_token_id is None:
|
| 275 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
| 276 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
| 277 |
+
|
| 278 |
+
# update generated ids, model inputs, and length for next step
|
| 279 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 280 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
| 281 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 282 |
+
)
|
| 283 |
+
yield input_ids
|
| 284 |
+
# torch.cuda.empty_cache()
|
| 285 |
+
# if eos_token was found in one sentence, set sentence to finished
|
| 286 |
+
if eos_token_id_tensor is not None:
|
| 287 |
+
unfinished_sequences = unfinished_sequences.mul(
|
| 288 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
| 292 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
| 293 |
+
if not synced_gpus:
|
| 294 |
+
break
|
| 295 |
+
else:
|
| 296 |
+
this_peer_finished = True
|
| 297 |
+
return input_ids
|
| 298 |
+
|
| 299 |
+
def empty_cache(self):
|
| 300 |
+
torch.cuda.empty_cache()
|
| 301 |
+
|
| 302 |
+
def beam_sample(
|
| 303 |
+
self,
|
| 304 |
+
input_ids,
|
| 305 |
+
logits_processor,
|
| 306 |
+
logits_warper,
|
| 307 |
+
stopping_criteria,
|
| 308 |
+
generation_config,
|
| 309 |
+
synced_gpus,
|
| 310 |
+
**model_kwargs,
|
| 311 |
+
):
|
| 312 |
+
bos_token_id, eos_token_id, pad_token_id = (
|
| 313 |
+
generation_config.bos_token_id,
|
| 314 |
+
generation_config.eos_token_id,
|
| 315 |
+
generation_config.pad_token_id,
|
| 316 |
+
)
|
| 317 |
+
if isinstance(eos_token_id, int):
|
| 318 |
+
eos_token_id = [eos_token_id]
|
| 319 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
| 320 |
+
num_beams = generation_config.num_beams
|
| 321 |
+
batch_size, cur_len = input_ids.shape[0], input_ids.shape[-1]
|
| 322 |
+
beam_scorer = BeamSearchScorer(
|
| 323 |
+
batch_size=batch_size,
|
| 324 |
+
num_beams=generation_config.num_beams,
|
| 325 |
+
device=input_ids.device,
|
| 326 |
+
length_penalty=generation_config.length_penalty,
|
| 327 |
+
do_early_stopping=generation_config.early_stopping,
|
| 328 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
| 329 |
+
max_length=generation_config.max_length,
|
| 330 |
+
)
|
| 331 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 332 |
+
input_ids=input_ids,
|
| 333 |
+
expand_size=generation_config.num_beams * generation_config.num_return_sequences,
|
| 334 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 335 |
+
**model_kwargs,
|
| 336 |
+
)
|
| 337 |
+
scores = ()
|
| 338 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
|
| 339 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
| 340 |
+
|
| 341 |
+
this_peer_finished = False # used by synced_gpus only
|
| 342 |
+
while True:
|
| 343 |
+
if synced_gpus:
|
| 344 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
| 345 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
| 346 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
| 347 |
+
# send 0.0 if we finished, 1.0 otherwise
|
| 348 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
| 349 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
| 350 |
+
if this_peer_finished_flag.item() == 0.0:
|
| 351 |
+
break
|
| 352 |
+
|
| 353 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 354 |
+
outputs = self(
|
| 355 |
+
**model_inputs,
|
| 356 |
+
return_dict=True,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
if synced_gpus and this_peer_finished:
|
| 360 |
+
cur_len = cur_len + 1
|
| 361 |
+
continue # don't waste resources running the code we don't need
|
| 362 |
+
|
| 363 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 364 |
+
|
| 365 |
+
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
|
| 366 |
+
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
|
| 367 |
+
next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
|
| 368 |
+
next_token_scores = nn.functional.log_softmax(
|
| 369 |
+
next_token_logits, dim=-1
|
| 370 |
+
) # (batch_size * num_beams, vocab_size)
|
| 371 |
+
|
| 372 |
+
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
|
| 373 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(next_token_scores)
|
| 374 |
+
# Note: logits warpers are intentionally applied after adding running beam scores. On some logits warpers
|
| 375 |
+
# (like top_p) this is indiferent, but on others (like temperature) it is not. For reference, see
|
| 376 |
+
# https://github.com/huggingface/transformers/pull/5420#discussion_r449779867
|
| 377 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
| 378 |
+
|
| 379 |
+
# reshape for beam search
|
| 380 |
+
vocab_size = next_token_scores.shape[-1]
|
| 381 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
| 382 |
+
|
| 383 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 384 |
+
|
| 385 |
+
next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
|
| 386 |
+
next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
|
| 387 |
+
|
| 388 |
+
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
|
| 389 |
+
next_tokens = torch.gather(next_tokens, -1, _indices)
|
| 390 |
+
|
| 391 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
| 392 |
+
next_tokens = next_tokens % vocab_size
|
| 393 |
+
|
| 394 |
+
# stateless
|
| 395 |
+
beam_outputs = beam_scorer.process(
|
| 396 |
+
input_ids,
|
| 397 |
+
next_token_scores,
|
| 398 |
+
next_tokens,
|
| 399 |
+
next_indices,
|
| 400 |
+
pad_token_id=pad_token_id,
|
| 401 |
+
eos_token_id=eos_token_id,
|
| 402 |
+
beam_indices=None,
|
| 403 |
+
)
|
| 404 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
| 405 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
| 406 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
| 407 |
+
|
| 408 |
+
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
| 409 |
+
yield input_ids
|
| 410 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
| 411 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 412 |
+
)
|
| 413 |
+
if model_kwargs["past_key_values"] is not None:
|
| 414 |
+
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
|
| 415 |
+
|
| 416 |
+
# increase cur_len
|
| 417 |
+
cur_len = cur_len + 1
|
| 418 |
+
|
| 419 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
|
| 420 |
+
if not synced_gpus:
|
| 421 |
+
break
|
| 422 |
+
else:
|
| 423 |
+
this_peer_finished = True
|
| 424 |
+
|
| 425 |
+
sequence_outputs = beam_scorer.finalize(
|
| 426 |
+
input_ids,
|
| 427 |
+
beam_scores,
|
| 428 |
+
next_tokens,
|
| 429 |
+
next_indices,
|
| 430 |
+
pad_token_id=pad_token_id,
|
| 431 |
+
eos_token_id=eos_token_id,
|
| 432 |
+
max_length=stopping_criteria.max_length,
|
| 433 |
+
beam_indices=None,
|
| 434 |
+
)
|
| 435 |
+
yield sequence_outputs["sequences"]
|
| 436 |
+
|
| 437 |
+
def greedy_search(
|
| 438 |
+
self,
|
| 439 |
+
input_ids,
|
| 440 |
+
logits_processor,
|
| 441 |
+
stopping_criteria,
|
| 442 |
+
generation_config,
|
| 443 |
+
synced_gpus,
|
| 444 |
+
**model_kwargs,
|
| 445 |
+
):
|
| 446 |
+
# init values
|
| 447 |
+
bos_token_id, eos_token_id, pad_token_id = (
|
| 448 |
+
generation_config.bos_token_id,
|
| 449 |
+
generation_config.eos_token_id,
|
| 450 |
+
generation_config.pad_token_id,
|
| 451 |
+
)
|
| 452 |
+
if isinstance(eos_token_id, int):
|
| 453 |
+
eos_token_id = [eos_token_id]
|
| 454 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
| 455 |
+
# init attention / hidden states / scores tuples
|
| 456 |
+
scores = ()
|
| 457 |
+
# keep track of which sequences are already finished
|
| 458 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
| 459 |
+
this_peer_finished = False # used by synced_gpus only
|
| 460 |
+
while True:
|
| 461 |
+
if synced_gpus:
|
| 462 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
| 463 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
| 464 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
| 465 |
+
# send 0.0 if we finished, 1.0 otherwise
|
| 466 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
| 467 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
| 468 |
+
if this_peer_finished_flag.item() == 0.0:
|
| 469 |
+
break
|
| 470 |
+
|
| 471 |
+
# prepare model inputs
|
| 472 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 473 |
+
# forward pass to get next token
|
| 474 |
+
outputs = self(
|
| 475 |
+
**model_inputs,
|
| 476 |
+
return_dict=True,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
if synced_gpus and this_peer_finished:
|
| 480 |
+
continue # don't waste resources running the code we don't need
|
| 481 |
+
|
| 482 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 483 |
+
# pre-process distribution
|
| 484 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
| 485 |
+
# argmax
|
| 486 |
+
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
| 487 |
+
# finished sentences should have their next token be a padding token
|
| 488 |
+
if eos_token_id is not None:
|
| 489 |
+
if pad_token_id is None:
|
| 490 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
| 491 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
| 492 |
+
# update generated ids, model inputs, and length for next step
|
| 493 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 494 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
| 495 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 496 |
+
)
|
| 497 |
+
yield input_ids
|
| 498 |
+
# if eos_token was found in one sentence, set sentence to finished
|
| 499 |
+
if eos_token_id_tensor is not None:
|
| 500 |
+
unfinished_sequences = unfinished_sequences.mul(
|
| 501 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
| 505 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
| 506 |
+
if not synced_gpus:
|
| 507 |
+
break
|
| 508 |
+
else:
|
| 509 |
+
this_peer_finished = True
|
| 510 |
+
yield input_ids
|
| 511 |
+
|
| 512 |
+
def beam_search(
|
| 513 |
+
self,
|
| 514 |
+
generation_config,
|
| 515 |
+
input_ids,
|
| 516 |
+
logits_processor,
|
| 517 |
+
stopping_criteria,
|
| 518 |
+
synced_gpus,
|
| 519 |
+
**model_kwargs,
|
| 520 |
+
):
|
| 521 |
+
# 10. go into beam search generation modes
|
| 522 |
+
# 11. prepare beam search scorer
|
| 523 |
+
bos_token_id, eos_token_id, pad_token_id = (
|
| 524 |
+
generation_config.bos_token_id,
|
| 525 |
+
generation_config.eos_token_id,
|
| 526 |
+
generation_config.pad_token_id,
|
| 527 |
+
)
|
| 528 |
+
if isinstance(eos_token_id, int):
|
| 529 |
+
eos_token_id = [eos_token_id]
|
| 530 |
+
num_beams = generation_config.num_beams
|
| 531 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
| 532 |
+
beam_scorer = BeamSearchScorer(
|
| 533 |
+
batch_size=batch_size,
|
| 534 |
+
num_beams=generation_config.num_beams,
|
| 535 |
+
device=input_ids.device,
|
| 536 |
+
length_penalty=generation_config.length_penalty,
|
| 537 |
+
do_early_stopping=generation_config.early_stopping,
|
| 538 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
| 539 |
+
max_length=generation_config.max_length,
|
| 540 |
+
)
|
| 541 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
| 542 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 543 |
+
input_ids=input_ids,
|
| 544 |
+
expand_size=generation_config.num_beams,
|
| 545 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 546 |
+
**model_kwargs,
|
| 547 |
+
)
|
| 548 |
+
# beam_search logits
|
| 549 |
+
batch_beam_size, cur_len = input_ids.shape
|
| 550 |
+
if num_beams * batch_size != batch_beam_size:
|
| 551 |
+
raise ValueError(
|
| 552 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
| 553 |
+
)
|
| 554 |
+
beam_scores = torch.zeros(
|
| 555 |
+
(batch_size, num_beams), dtype=torch.float, device=input_ids.device
|
| 556 |
+
)
|
| 557 |
+
beam_scores[:, 1:] = -1e9
|
| 558 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
| 559 |
+
this_peer_finished = False # used by synced_gpus only
|
| 560 |
+
while True:
|
| 561 |
+
if synced_gpus:
|
| 562 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
| 563 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
| 564 |
+
this_peer_finished_flag = torch.tensor(
|
| 565 |
+
0.0 if this_peer_finished else 1.0
|
| 566 |
+
).to(input_ids.device)
|
| 567 |
+
# send 0.0 if we finished, 1.0 otherwise
|
| 568 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
| 569 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
| 570 |
+
if this_peer_finished_flag.item() == 0.0:
|
| 571 |
+
break
|
| 572 |
+
|
| 573 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 574 |
+
outputs = self(
|
| 575 |
+
**model_inputs,
|
| 576 |
+
return_dict=True,
|
| 577 |
+
output_attentions=False,
|
| 578 |
+
output_hidden_states=False,
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
if synced_gpus and this_peer_finished:
|
| 582 |
+
cur_len = cur_len + 1
|
| 583 |
+
continue # don't waste resources running the code we don't need
|
| 584 |
+
|
| 585 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 586 |
+
# next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len) hack: adjust tokens for Marian.
|
| 587 |
+
next_token_scores = nn.functional.log_softmax(
|
| 588 |
+
next_token_logits, dim=-1
|
| 589 |
+
) # (batch_size * num_beams, vocab_size)
|
| 590 |
+
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
|
| 591 |
+
next_token_scores = next_token_scores_processed + beam_scores[
|
| 592 |
+
:, None
|
| 593 |
+
].expand_as(next_token_scores)
|
| 594 |
+
|
| 595 |
+
# reshape for beam search
|
| 596 |
+
vocab_size = next_token_scores.shape[-1]
|
| 597 |
+
next_token_scores = next_token_scores.view(
|
| 598 |
+
batch_size, num_beams * vocab_size
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
|
| 602 |
+
next_token_scores, next_tokens = torch.topk(
|
| 603 |
+
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
|
| 604 |
+
)
|
| 605 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
| 606 |
+
next_tokens = next_tokens % vocab_size
|
| 607 |
+
# stateless
|
| 608 |
+
beam_outputs = beam_scorer.process(
|
| 609 |
+
input_ids,
|
| 610 |
+
next_token_scores,
|
| 611 |
+
next_tokens,
|
| 612 |
+
next_indices,
|
| 613 |
+
pad_token_id=pad_token_id,
|
| 614 |
+
eos_token_id=eos_token_id,
|
| 615 |
+
beam_indices=None,
|
| 616 |
+
)
|
| 617 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
| 618 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
| 619 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
| 620 |
+
|
| 621 |
+
input_ids = torch.cat(
|
| 622 |
+
[input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1
|
| 623 |
+
)
|
| 624 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
| 625 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 626 |
+
)
|
| 627 |
+
if model_kwargs["past_key_values"] is not None:
|
| 628 |
+
model_kwargs["past_key_values"] = self._reorder_cache(
|
| 629 |
+
model_kwargs["past_key_values"], beam_idx
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
# increase cur_len
|
| 633 |
+
cur_len = cur_len + 1
|
| 634 |
+
|
| 635 |
+
yield input_ids
|
| 636 |
+
|
| 637 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, None):
|
| 638 |
+
if not synced_gpus:
|
| 639 |
+
break
|
| 640 |
+
else:
|
| 641 |
+
this_peer_finished = True
|
| 642 |
+
|
| 643 |
+
final_result = beam_scorer.finalize(
|
| 644 |
+
input_ids,
|
| 645 |
+
beam_scores,
|
| 646 |
+
next_tokens,
|
| 647 |
+
next_indices,
|
| 648 |
+
pad_token_id=pad_token_id,
|
| 649 |
+
eos_token_id=eos_token_id,
|
| 650 |
+
max_length=stopping_criteria.max_length,
|
| 651 |
+
beam_indices=None,
|
| 652 |
+
)
|
| 653 |
+
yield final_result["sequences"]
|
| 654 |
+
|