Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
🎙️ Multi-Engine TTS – Zero-GPU edition
|
| 3 |
+
Kokoro │ Veena │ pyttsx3 (fallback)
|
| 4 |
+
Routes every synthesis to an idle A100.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os, tempfile, subprocess, numpy as np
|
| 8 |
+
os.environ["HF_HOME"] = "/data" # persistent cache
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
import spaces # << Zero-GPU helper
|
| 13 |
+
|
| 14 |
+
# ------------------------------------------------------------------
|
| 15 |
+
# 1. Engine availability flags
|
| 16 |
+
# ------------------------------------------------------------------
|
| 17 |
+
KOKORO_OK = False
|
| 18 |
+
VEENA_OK = False
|
| 19 |
+
PYT_OK = False
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from kokoro import KPipeline
|
| 23 |
+
KOKORO_OK = True
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print("Kokoro unavailable:", e)
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
import torch, transformers, snac
|
| 29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 30 |
+
from snac import SNAC
|
| 31 |
+
VEENA_OK = True
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print("Veena deps unavailable:", e)
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
import pyttsx3
|
| 37 |
+
PYT_OK = True
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print("pyttsx3 unavailable:", e)
|
| 40 |
+
|
| 41 |
+
# ------------------------------------------------------------------
|
| 42 |
+
# 2. Lazy model loader (runs once per GPU worker)
|
| 43 |
+
# ------------------------------------------------------------------
|
| 44 |
+
kokoro_pipe = None
|
| 45 |
+
veena_model = None
|
| 46 |
+
veena_tok = None
|
| 47 |
+
veena_snac = None
|
| 48 |
+
|
| 49 |
+
def load_kokoro():
|
| 50 |
+
global kokoro_pipe
|
| 51 |
+
if kokoro_pipe is None and KOKORO_OK:
|
| 52 |
+
kokoro_pipe = KPipeline(lang_code='a')
|
| 53 |
+
return kokoro_pipe
|
| 54 |
+
|
| 55 |
+
def load_veena():
|
| 56 |
+
global veena_model, veena_tok, veena_snac
|
| 57 |
+
if veena_model is None and VEENA_OK:
|
| 58 |
+
bnb = BitsAndBytesConfig(load_in_4bit=True,
|
| 59 |
+
bnb_4bit_quant_type="nf4",
|
| 60 |
+
bnb_4bit_compute_dtype=torch.bfloat16)
|
| 61 |
+
veena_model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
"maya-research/veena-tts",
|
| 63 |
+
quantization_config=bnb,
|
| 64 |
+
device_map="auto",
|
| 65 |
+
trust_remote_code=True)
|
| 66 |
+
veena_tok = AutoTokenizer.from_pretrained("maya-research/veena-tts",
|
| 67 |
+
trust_remote_code=True)
|
| 68 |
+
veena_snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
|
| 69 |
+
if torch.cuda.is_available():
|
| 70 |
+
veena_snac = veena_snac.cuda()
|
| 71 |
+
return veena_model
|
| 72 |
+
|
| 73 |
+
# ------------------------------------------------------------------
|
| 74 |
+
# 3. Generation helpers (CPU→GPU off-load)
|
| 75 |
+
# ------------------------------------------------------------------
|
| 76 |
+
AUDIO_CODE_BASE_OFFSET = 128266
|
| 77 |
+
START_OF_SPEECH_TOKEN = 128257
|
| 78 |
+
END_OF_SPEECH_TOKEN = 128258
|
| 79 |
+
START_OF_HUMAN_TOKEN = 128259
|
| 80 |
+
END_OF_HUMAN_TOKEN = 128260
|
| 81 |
+
START_OF_AI_TOKEN = 128261
|
| 82 |
+
END_OF_AI_TOKEN = 128262
|
| 83 |
+
|
| 84 |
+
def decode_snac(tokens):
|
| 85 |
+
if len(tokens) % 7:
|
| 86 |
+
return None
|
| 87 |
+
codes = [[] for _ in range(3)]
|
| 88 |
+
offsets = [AUDIO_CODE_BASE_OFFSET + i*4096 for i in range(7)]
|
| 89 |
+
for i in range(0, len(tokens), 7):
|
| 90 |
+
codes[0].append(tokens[i] - offsets[0])
|
| 91 |
+
codes[1].extend([tokens[i+1]-offsets[1], tokens[i+4]-offsets[4]])
|
| 92 |
+
codes[2].extend([tokens[i+2]-offsets[2], tokens[i+3]-offsets[3],
|
| 93 |
+
tokens[i+5]-offsets[5], tokens[i+6]-offsets[6]])
|
| 94 |
+
device = veena_snac.device
|
| 95 |
+
hierarchical = [torch.tensor(c, dtype=torch.int32, device=device).unsqueeze(0)
|
| 96 |
+
for c in codes]
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
wav = veena_snac.decode(hierarchical).squeeze().clamp(-1,1).cpu().numpy()
|
| 99 |
+
return wav
|
| 100 |
+
|
| 101 |
+
def tts_veena(text, speaker, temperature, top_p):
|
| 102 |
+
load_veena()
|
| 103 |
+
prompt = f"<spk_{speaker}> {text}"
|
| 104 |
+
tok = veena_tok.encode(prompt, add_special_tokens=False)
|
| 105 |
+
input_ids = [START_OF_HUMAN_TOKEN] + tok + [END_OF_HUMAN_TOKEN,
|
| 106 |
+
START_OF_AI_TOKEN, START_OF_SPEECH_TOKEN]
|
| 107 |
+
input_ids = torch.tensor([input_ids], device=veena_model.device)
|
| 108 |
+
max_new = min(int(len(text)*1.3)*7 + 21, 700)
|
| 109 |
+
out = veena_model.generate(
|
| 110 |
+
input_ids,
|
| 111 |
+
max_new_tokens=max_new,
|
| 112 |
+
do_sample=True,
|
| 113 |
+
temperature=temperature,
|
| 114 |
+
top_p=top_p,
|
| 115 |
+
repetition_penalty=1.05,
|
| 116 |
+
pad_token_id=veena_tok.pad_token_id,
|
| 117 |
+
eos_token_id=[END_OF_SPEECH_TOKEN, END_OF_AI_TOKEN])
|
| 118 |
+
gen = out[0, len(input_ids[0]):].tolist()
|
| 119 |
+
snac_toks = [t for t in gen if AUDIO_CODE_BASE_OFFSET <= t < AUDIO_CODE_BASE_OFFSET+7*4096]
|
| 120 |
+
if not snac_toks:
|
| 121 |
+
raise RuntimeError("No audio tokens produced")
|
| 122 |
+
return decode_snac(snac_toks)
|
| 123 |
+
|
| 124 |
+
def tts_kokoro(text, voice, speed):
|
| 125 |
+
pipe = load_kokoro()
|
| 126 |
+
generator = pipe(text, voice=voice, speed=speed)
|
| 127 |
+
for gs, ps, audio in generator:
|
| 128 |
+
return audio
|
| 129 |
+
raise RuntimeError("Kokoro generation failed")
|
| 130 |
+
|
| 131 |
+
def tts_pyttsx3(text, rate, volume):
|
| 132 |
+
engine = pyttsx3.init()
|
| 133 |
+
engine.setProperty('rate', rate)
|
| 134 |
+
engine.setProperty('volume', volume)
|
| 135 |
+
fd, path = tempfile.mkstemp(suffix='.wav')
|
| 136 |
+
os.close(fd)
|
| 137 |
+
engine.save_to_file(text, path)
|
| 138 |
+
engine.runAndWait()
|
| 139 |
+
wav, sr = sf.read(path)
|
| 140 |
+
os.remove(path)
|
| 141 |
+
return wav
|
| 142 |
+
|
| 143 |
+
# ------------------------------------------------------------------
|
| 144 |
+
# 4. ZERO-GPU ENTRY POINT (decorated)
|
| 145 |
+
# ------------------------------------------------------------------
|
| 146 |
+
@spaces.GPU
|
| 147 |
+
def synthesise(text, engine, voice, speed, speaker, temperature, top_p, rate, vol):
|
| 148 |
+
if not text.strip():
|
| 149 |
+
raise gr.Error("Please enter some text.")
|
| 150 |
+
if engine == "kokoro" and KOKORO_OK:
|
| 151 |
+
wav = tts_kokoro(text, voice=voice, speed=speed)
|
| 152 |
+
elif engine == "veena" and VEENA_OK:
|
| 153 |
+
wav = tts_veena(text, speaker=speaker, temperature=temperature, top_p=top_p)
|
| 154 |
+
elif engine == "pyttsx3" and PYT_OK:
|
| 155 |
+
wav = tts_pyttsx3(text, rate=rate, volume=vol)
|
| 156 |
+
else:
|
| 157 |
+
raise gr.Error(f"{engine} is not available on this Space.")
|
| 158 |
+
fd, tmp = tempfile.mkstemp(suffix='.wav')
|
| 159 |
+
os.close(fd)
|
| 160 |
+
sf.write(tmp, wav, 24000)
|
| 161 |
+
return tmp
|
| 162 |
+
|
| 163 |
+
# ------------------------------------------------------------------
|
| 164 |
+
# 5. Gradio UI (unchanged visuals)
|
| 165 |
+
# ------------------------------------------------------------------
|
| 166 |
+
css = """footer {visibility: hidden} #col-left {max-width: 320px}"""
|
| 167 |
+
|
| 168 |
+
with gr.Blocks(css=css, title="Multi-Engine TTS – Zero-GPU") as demo:
|
| 169 |
+
gr.Markdown("## 🎙️ Multi-Engine TTS Demo – Zero-GPU \n*Kokoro ‑ Veena ‑ pyttsx3*")
|
| 170 |
+
|
| 171 |
+
with gr.Row():
|
| 172 |
+
with gr.Column(elem_id="col-left"):
|
| 173 |
+
engine = gr.Radio(label="Engine",
|
| 174 |
+
choices=[e for e in ["kokoro","veena","pyttsx3"]
|
| 175 |
+
if globals()[e.upper()+"_OK"]],
|
| 176 |
+
value="kokoro" if KOKORO_OK else
|
| 177 |
+
"veena" if VEENA_OK else "pyttsx3")
|
| 178 |
+
|
| 179 |
+
with gr.Group(visible=KOKORO_OK) as kokoro_box:
|
| 180 |
+
voice = gr.Dropdown(label="Voice",
|
| 181 |
+
choices=['af_heart','af_sky','af_mist','af_dusk'],
|
| 182 |
+
value='af_heart')
|
| 183 |
+
speed = gr.Slider(0.5, 2.0, 1.0, step=0.1, label="Speed")
|
| 184 |
+
|
| 185 |
+
with gr.Group(visible=VEENA_OK) as veena_box:
|
| 186 |
+
speaker = gr.Dropdown(label="Speaker",
|
| 187 |
+
choices=['kavya','agastya','maitri','vinaya'],
|
| 188 |
+
value='kavya')
|
| 189 |
+
temperature = gr.Slider(0.1, 1.0, 0.4, step=0.05, label="Temperature")
|
| 190 |
+
top_p = gr.Slider(0.1, 1.0, 0.9, step=0.05, label="Top-p")
|
| 191 |
+
|
| 192 |
+
with gr.Group(visible=PYT_OK) as pyttsx3_box:
|
| 193 |
+
rate = gr.Slider(50, 300, 180, step=5, label="Words / min")
|
| 194 |
+
vol = gr.Slider(0.0, 1.0, 1.0, step=0.05, label="Volume")
|
| 195 |
+
|
| 196 |
+
with gr.Column(scale=3):
|
| 197 |
+
text = gr.Textbox(label="Text to speak",
|
| 198 |
+
placeholder="Type or paste text here …",
|
| 199 |
+
lines=6, max_lines=12)
|
| 200 |
+
btn = gr.Button("🎧 Synthesise", variant="primary")
|
| 201 |
+
audio_out = gr.Audio(label="Generated speech", type="filepath")
|
| 202 |
+
|
| 203 |
+
# show/hide panels
|
| 204 |
+
def switch_panel(e):
|
| 205 |
+
return (gr.update(visible=e=="kokoro"),
|
| 206 |
+
gr.update(visible=e=="veena"),
|
| 207 |
+
gr.update(visible=e=="pyttsx3"))
|
| 208 |
+
engine.change(switch_panel, inputs=engine,
|
| 209 |
+
outputs=[kokoro_box, veena_box, pyttsx3_box])
|
| 210 |
+
|
| 211 |
+
# binding
|
| 212 |
+
btn.click(synthesise,
|
| 213 |
+
inputs=[text, engine, voice, speed, speaker,
|
| 214 |
+
temperature, top_p, rate, vol],
|
| 215 |
+
outputs=audio_out)
|
| 216 |
+
|
| 217 |
+
gr.Markdown("### Tips \n"
|
| 218 |
+
"- **Kokoro** – fastest, good quality English \n"
|
| 219 |
+
"- **Veena** – multilingual, GPU-friendly (4-bit) \n"
|
| 220 |
+
"- **pyttsx3** – offline fallback, any language \n"
|
| 221 |
+
"Audio is returned as 24 kHz WAV.")
|
| 222 |
+
|
| 223 |
+
# ------------------------------------------------------------------
|
| 224 |
+
# 6. Launch
|
| 225 |
+
# ------------------------------------------------------------------
|
| 226 |
+
demo.launch()
|