Spaces:
Sleeping
Sleeping
Commit
·
38788ba
1
Parent(s):
557942e
Add simple process script
Browse files- process.py +61 -0
process.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import csv
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 6 |
+
|
| 7 |
+
MODEL = "d4data/biomedical-ner-all"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 10 |
+
model = AutoModelForTokenClassification.from_pretrained(MODEL)
|
| 11 |
+
|
| 12 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def process(*args):
|
| 16 |
+
parser = argparse.ArgumentParser()
|
| 17 |
+
parser.add_argument('--notes', help='Notes CSV', required=True)
|
| 18 |
+
parser.add_argument('--out', help='Output', required=True)
|
| 19 |
+
args = parser.parse_args()
|
| 20 |
+
|
| 21 |
+
filepath = args.notes
|
| 22 |
+
outpath = args.out
|
| 23 |
+
|
| 24 |
+
if not filepath.endswith(".csv"):
|
| 25 |
+
raise ValueError("Filepath must be a .csv file.")
|
| 26 |
+
|
| 27 |
+
if not outpath.endswith(".json"):
|
| 28 |
+
raise ValueError("Output path must be a .json file.")
|
| 29 |
+
|
| 30 |
+
processed = []
|
| 31 |
+
with open(filepath, "r") as f:
|
| 32 |
+
reader = csv.DictReader(f)
|
| 33 |
+
for row in reader:
|
| 34 |
+
text = row["text"]
|
| 35 |
+
raw = pipe(text)
|
| 36 |
+
# do something with `raw` here e.g. save to file
|
| 37 |
+
ner_content = {
|
| 38 |
+
"text": text,
|
| 39 |
+
"score": row["score"],
|
| 40 |
+
"entities": [
|
| 41 |
+
{
|
| 42 |
+
"entity": x["entity_group"],
|
| 43 |
+
"word": x["word"],
|
| 44 |
+
"score": float(x["score"]),
|
| 45 |
+
"start": x["start"],
|
| 46 |
+
"end": x["end"],
|
| 47 |
+
}
|
| 48 |
+
for x in raw
|
| 49 |
+
],
|
| 50 |
+
}
|
| 51 |
+
processed.append(ner_content)
|
| 52 |
+
|
| 53 |
+
# write as json to file
|
| 54 |
+
with open(outpath, "w") as f:
|
| 55 |
+
json.dump(processed, f)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
import sys
|
| 60 |
+
|
| 61 |
+
process(*sys.argv[1:])
|