A newer version of the Gradio SDK is available:
5.49.1
metadata
title: Spleen Segmentation Demo
emoji: 🖥️
colorFrom: blue
colorTo: gray
sdk: gradio
sdk_version: 5.49.0
app_file: app.py
pinned: false
short_description: 3D spleen segmentation with MONAI
models:
- MONAI/example_spleen_segmentation
CT Spleen Segmentation Demo
This Space demonstrates 3D spleen segmentation from CT scans using the MONAI/example_spleen_segmentation model.
Model Information
- Architecture: UNet
- Input: 3D CT images (96×96×96)
- Output: Binary segmentation (spleen vs background)
- Performance: Mean Dice Score = 0.96
- Training: Trained on Medical Segmentation Decathlon Challenge 2018 dataset
How to Use
- Upload a CT scan in NIfTI format (.nii or .nii.gz)
- Click "Segment Spleen"
- View the segmentation overlay (middle slice visualization)
- Download the full 3D segmentation
Requirements
- MONAI
- PyTorch
- nibabel
- numpy
- huggingface_hub
Citation
If you use this model, please cite:
Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training."
arXiv preprint arXiv:1811.12506 (2018).
Disclaimer
This is an example demonstration, not to be used for diagnostic purposes.