Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,15 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def main():
|
| 5 |
-
# Load the
|
| 6 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Title and description
|
| 10 |
st.title("Email Analysis Tool")
|
|
@@ -21,21 +26,27 @@ def main():
|
|
| 21 |
spam_label = spam_result[0]["label"]
|
| 22 |
spam_confidence = spam_result[0]["score"]
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
if spam_label == "POSITIVE":
|
| 26 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
| 27 |
else:
|
| 28 |
-
# Step 2:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
if
|
| 34 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
| 35 |
-
st.write(f"Sentiment:
|
| 36 |
-
else: #
|
| 37 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
| 38 |
-
st.write(f"Sentiment:
|
| 39 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|
| 40 |
else:
|
| 41 |
st.write("Please enter an email body to analyze.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
def main():
|
| 7 |
+
# Load the spam detection pipeline
|
| 8 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 9 |
+
|
| 10 |
+
# Load the sentiment model and tokenizer directly
|
| 11 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 13 |
|
| 14 |
# Title and description
|
| 15 |
st.title("Email Analysis Tool")
|
|
|
|
| 26 |
spam_label = spam_result[0]["label"]
|
| 27 |
spam_confidence = spam_result[0]["score"]
|
| 28 |
|
| 29 |
+
# Assuming "POSITIVE" means spam/phishing (adjust if incorrect)
|
| 30 |
+
if spam_label == "POSITIVE":
|
| 31 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
| 32 |
else:
|
| 33 |
+
# Step 2: Analyze sentiment for non-spam emails
|
| 34 |
+
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
|
| 35 |
+
outputs = sentiment_model(**inputs)
|
| 36 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 37 |
+
predictions = predictions.cpu().detach().numpy()
|
| 38 |
+
sentiment_index = np.argmax(predictions)
|
| 39 |
+
sentiment_confidence = predictions[0][sentiment_index]
|
| 40 |
+
|
| 41 |
+
# Map index to sentiment (1 = positive, 0 = negative)
|
| 42 |
+
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
| 43 |
|
| 44 |
+
if sentiment == "Positive":
|
| 45 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
| 46 |
+
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
| 47 |
+
else: # Negative sentiment
|
| 48 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
| 49 |
+
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).")
|
| 50 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|
| 51 |
else:
|
| 52 |
st.write("Please enter an email body to analyze.")
|