File size: 18,730 Bytes
ae91ef9
fba9477
 
 
 
 
 
 
 
c4fe16f
fba9477
 
 
 
c4fe16f
 
fba9477
 
 
 
 
c4fe16f
 
 
 
fba9477
 
 
c4fe16f
 
 
 
 
fba9477
506ecd3
a70eba7
 
 
fba9477
 
 
 
 
 
 
04be12f
 
c4fe16f
 
 
 
fba9477
 
 
 
 
 
 
 
 
c4fe16f
 
 
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fe16f
 
fba9477
 
c4fe16f
 
 
 
 
 
 
 
ae91ef9
fba9477
 
 
 
c4fe16f
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fe16f
 
 
 
 
 
 
fba9477
c4fe16f
fba9477
c4fe16f
fba9477
 
c4fe16f
 
 
 
 
fba9477
 
 
 
 
 
c4fe16f
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fe16f
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
c4fe16f
fba9477
 
 
 
c4fe16f
fba9477
c4fe16f
fba9477
 
 
 
 
 
c4fe16f
 
fba9477
 
 
 
 
c4fe16f
 
 
 
fba9477
c4fe16f
 
 
 
fba9477
 
 
c4fe16f
 
 
 
 
 
 
 
fba9477
c4fe16f
fba9477
 
c4fe16f
fba9477
c4fe16f
fba9477
 
 
 
 
 
 
 
c4fe16f
fba9477
 
 
 
 
 
c4fe16f
 
 
fba9477
 
c4fe16f
 
fba9477
c4fe16f
fba9477
 
 
 
 
 
 
 
c4fe16f
 
 
 
 
 
 
 
 
 
 
 
 
 
fba9477
 
 
 
 
 
 
 
c4fe16f
fba9477
 
c4fe16f
fba9477
 
 
c4fe16f
fba9477
c4fe16f
 
fba9477
c4fe16f
fba9477
c4fe16f
fba9477
 
 
 
c4fe16f
fba9477
c4fe16f
fba9477
c4fe16f
fba9477
 
 
c4fe16f
 
fba9477
c4fe16f
fba9477
 
 
c4fe16f
fba9477
 
c4fe16f
fba9477
 
 
c4fe16f
fba9477
 
c4fe16f
fba9477
c4fe16f
fba9477
 
 
 
 
c4fe16f
 
 
 
 
 
 
 
fba9477
 
 
c4fe16f
fba9477
c4fe16f
 
fba9477
 
 
 
c4fe16f
 
fba9477
c4fe16f
 
 
 
 
 
 
 
fba9477
c4fe16f
 
fba9477
c4fe16f
fba9477
 
 
 
 
 
 
 
c4fe16f
fba9477
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import spaces
import json
import os
import sys
import threading
import time

import warnings

import numpy as np

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

import pandas as pd

current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
sys.path.append(os.path.join(current_dir, "indextts"))

import argparse
parser = argparse.ArgumentParser(
    description="IndexTTS WebUI",
    formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
parser.add_argument("--model_dir", type=str, default="./checkpoints", help="Model checkpoints directory")
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
parser.add_argument("--deepspeed", action="store_true", default=False, help="Use DeepSpeed to accelerate if available")
parser.add_argument("--cuda_kernel", action="store_true", default=False, help="Use CUDA kernel for inference if available")
parser.add_argument("--gui_seg_tokens", type=int, default=120, help="GUI: Max tokens per generation segment")
cmd_args = parser.parse_args()

from tools.download_files import download_model_from_huggingface
download_model_from_huggingface(os.path.join(current_dir,"checkpoints"),
                                os.path.join(current_dir, "checkpoints","hf_cache"))

import gradio as gr
from indextts.infer_v2 import IndexTTS2
from tools.i18n.i18n import I18nAuto

i18n = I18nAuto(language="Auto")
MODE = 'local'
tts = IndexTTS2(model_dir=cmd_args.model_dir,
                cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
                use_fp16=cmd_args.fp16,
                use_deepspeed=cmd_args.deepspeed,
                use_cuda_kernel=cmd_args.cuda_kernel,
                )
# 支持的语言列表
LANGUAGES = {
    "中文": "zh_CN",
    "English": "en_US"
}
EMO_CHOICES = [i18n("与音色参考音频相同"),
                i18n("使用情感参考音频"),
                i18n("使用情感向量控制"),
                i18n("使用情感描述文本控制")]
EMO_CHOICES_BASE = EMO_CHOICES[:3]  # 基础选项
EMO_CHOICES_EXPERIMENTAL = EMO_CHOICES  # 全部选项(包括文本描述)

os.makedirs("outputs/tasks",exist_ok=True)
os.makedirs("prompts",exist_ok=True)

MAX_LENGTH_TO_USE_SPEED = 70
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
    example_cases = []
    for line in f:
        line = line.strip()
        if not line:
            continue
        example = json.loads(line)
        if example.get("emo_audio",None):
            emo_audio_path = os.path.join("examples",example["emo_audio"])
        else:
            emo_audio_path = None
        example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
                              EMO_CHOICES[example.get("emo_mode",0)],
                              example.get("text"),
                             emo_audio_path,
                             example.get("emo_weight",1.0),
                             example.get("emo_text",""),
                             example.get("emo_vec_1",0),
                             example.get("emo_vec_2",0),
                             example.get("emo_vec_3",0),
                             example.get("emo_vec_4",0),
                             example.get("emo_vec_5",0),
                             example.get("emo_vec_6",0),
                             example.get("emo_vec_7",0),
                             example.get("emo_vec_8",0),
                             example.get("emo_text") is not None]
                             )

def normalize_emo_vec(emo_vec):
    # emotion factors for better user experience
    k_vec = [0.75,0.70,0.80,0.80,0.75,0.75,0.55,0.45]
    tmp = np.array(k_vec) * np.array(emo_vec)
    if np.sum(tmp) > 0.8:
        tmp = tmp * 0.8/ np.sum(tmp)
    return tmp.tolist()

@spaces.GPU
def gen_single(emo_control_method,prompt, text,
               emo_ref_path, emo_weight,
               vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
               emo_text,emo_random,
               max_text_tokens_per_segment=120,
                *args, progress=gr.Progress()):
    output_path = None
    if not output_path:
        output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
    # set gradio progress
    tts.gr_progress = progress
    do_sample, top_p, top_k, temperature, \
        length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
    kwargs = {
        "do_sample": bool(do_sample),
        "top_p": float(top_p),
        "top_k": int(top_k) if int(top_k) > 0 else None,
        "temperature": float(temperature),
        "length_penalty": float(length_penalty),
        "num_beams": num_beams,
        "repetition_penalty": float(repetition_penalty),
        "max_mel_tokens": int(max_mel_tokens),
        # "typical_sampling": bool(typical_sampling),
        # "typical_mass": float(typical_mass),
    }
    if type(emo_control_method) is not int:
        emo_control_method = emo_control_method.value
    if emo_control_method == 0:  # emotion from speaker
        emo_ref_path = None  # remove external reference audio
    if emo_control_method == 1:  # emotion from reference audio
        # normalize emo_alpha for better user experience
        emo_weight = emo_weight * 0.8
        pass
    if emo_control_method == 2:  # emotion from custom vectors
        vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
        vec = normalize_emo_vec(vec)
    else:
        # don't use the emotion vector inputs for the other modes
        vec = None

    if emo_text == "":
        # erase empty emotion descriptions; `infer()` will then automatically use the main prompt
        emo_text = None

    print(f"Emo control mode:{emo_control_method},weight:{emo_weight},vec:{vec}")
    output = tts.infer(spk_audio_prompt=prompt, text=text,
                       output_path=output_path,
                       emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
                       emo_vector=vec,
                       use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
                       verbose=cmd_args.verbose,
                       max_text_tokens_per_segment=int(max_text_tokens_per_segment),
                       **kwargs)
    return gr.update(value=output,visible=True)

def update_prompt_audio():
    update_button = gr.update(interactive=True)
    return update_button

with gr.Blocks(title="IndexTTS Demo") as demo:
    mutex = threading.Lock()
    gr.HTML('''
    <h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2>
<p align="center">
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a>
</p>
    ''')

    with gr.Tab(i18n("音频生成")):
        with gr.Row():
            os.makedirs("prompts",exist_ok=True)
            prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
                                    sources=["upload","microphone"],type="filepath")
            prompt_list = os.listdir("prompts")
            default = ''
            if prompt_list:
                default = prompt_list[0]
            with gr.Column():
                input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
                gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
            output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
        experimental_checkbox = gr.Checkbox(label=i18n("显示实验功能"),value=False)
        with gr.Accordion(i18n("功能设置")):
            # 情感控制选项部分
            with gr.Row():
                emo_control_method = gr.Radio(
                    choices=EMO_CHOICES_BASE,
                    type="index",
                    value=EMO_CHOICES_BASE[0],label=i18n("情感控制方式"))
        # 情感参考音频部分
        with gr.Group(visible=False) as emotion_reference_group:
            with gr.Row():
                emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")

        # 情感随机采样
        with gr.Row(visible=False) as emotion_randomize_group:
            emo_random = gr.Checkbox(label=i18n("情感随机采样"), value=False)

        # 情感向量控制部分
        with gr.Group(visible=False) as emotion_vector_group:
            with gr.Row():
                with gr.Column():
                    vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                with gr.Column():
                    vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
                    vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)

        with gr.Group(visible=False) as emo_text_group:
            with gr.Row():
                emo_text = gr.Textbox(label=i18n("情感描述文本"),
                                      placeholder=i18n("请输入情绪描述(或留空以自动使用目标文本作为情绪描述)"),
                                      value="",
                                      info=i18n("例如:委屈巴巴、危险在悄悄逼近"))


        with gr.Row(visible=False) as emo_weight_group:
            emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.0, value=0.8, step=0.01)

        with gr.Accordion(i18n("高级生成参数设置"), open=False,visible=False) as advanced_settings_group:
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')} [Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)._")
                    with gr.Row():
                        do_sample = gr.Checkbox(label="do_sample", value=True, info=i18n("是否进行采样"))
                        temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
                    with gr.Row():
                        top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
                        top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
                        num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
                    with gr.Row():
                        repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
                        length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
                    max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info=i18n("生成Token最大数量,过小导致音频被截断"), key="max_mel_tokens")
                    # with gr.Row():
                    #     typical_sampling = gr.Checkbox(label="typical_sampling", value=False, info="不建议使用")
                    #     typical_mass = gr.Slider(label="typical_mass", value=0.9, minimum=0.0, maximum=1.0, step=0.1)
                with gr.Column(scale=2):
                    gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
                    with gr.Row():
                        initial_value = max(20, min(tts.cfg.gpt.max_text_tokens, cmd_args.gui_seg_tokens))
                        max_text_tokens_per_segment = gr.Slider(
                            label=i18n("分句最大Token数"), value=initial_value, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_segment",
                            info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"),
                        )
                    with gr.Accordion(i18n("预览分句结果"), open=True) as segments_settings:
                        segments_preview = gr.Dataframe(
                            headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
                            key="segments_preview",
                            wrap=True,
                        )
            advanced_params = [
                do_sample, top_p, top_k, temperature,
                length_penalty, num_beams, repetition_penalty, max_mel_tokens,
                # typical_sampling, typical_mass,
            ]
        
        if len(example_cases) > 2:
            example_table = gr.Examples(
                examples=example_cases[:-2],
                examples_per_page=20,
                inputs=[prompt_audio,
                        emo_control_method,
                        input_text_single,
                        emo_upload,
                        emo_weight,
                        emo_text,
                        vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8,experimental_checkbox]
            )
        elif len(example_cases) > 0:
            example_table = gr.Examples(
                examples=example_cases,
                examples_per_page=20,
                inputs=[prompt_audio,
                        emo_control_method,
                        input_text_single,
                        emo_upload,
                        emo_weight,
                        emo_text,
                        vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, experimental_checkbox]
            )

    def on_input_text_change(text, max_text_tokens_per_segment):
        if text and len(text) > 0:
            text_tokens_list = tts.tokenizer.tokenize(text)

            segments = tts.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment=int(max_text_tokens_per_segment))
            data = []
            for i, s in enumerate(segments):
                segment_str = ''.join(s)
                tokens_count = len(s)
                data.append([i, segment_str, tokens_count])
            return {
                segments_preview: gr.update(value=data, visible=True, type="array"),
            }
        else:
            df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
            return {
                segments_preview: gr.update(value=df),
            }

    def on_method_select(emo_control_method):
        if emo_control_method == 1:  # emotion reference audio
            return (gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=True)
                    )
        elif emo_control_method == 2:  # emotion vectors
            return (gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False)
                    )
        elif emo_control_method == 3:  # emotion text description
            return (gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=True)
                    )
        else:  # 0: same as speaker voice
            return (gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False)
                    )

    def on_experimental_change(is_exp):
        # 切换情感控制选项
        # 第三个返回值实际没有起作用
        if is_exp:
            return gr.update(choices=EMO_CHOICES_EXPERIMENTAL, value=EMO_CHOICES_EXPERIMENTAL[0]), gr.update(visible=True),gr.update(value=example_cases)
        else:
            return gr.update(choices=EMO_CHOICES_BASE, value=EMO_CHOICES_BASE[0]), gr.update(visible=False),gr.update(value=example_cases[:-2])

    emo_control_method.select(on_method_select,
        inputs=[emo_control_method],
        outputs=[emotion_reference_group,
                 emotion_randomize_group,
                 emotion_vector_group,
                 emo_text_group,
                 emo_weight_group]
    )

    input_text_single.change(
        on_input_text_change,
        inputs=[input_text_single, max_text_tokens_per_segment],
        outputs=[segments_preview]
    )

    experimental_checkbox.change(
        on_experimental_change,
        inputs=[experimental_checkbox],
        outputs=[emo_control_method, advanced_settings_group,example_table.dataset]  # 高级参数Accordion
    )

    max_text_tokens_per_segment.change(
        on_input_text_change,
        inputs=[input_text_single, max_text_tokens_per_segment],
        outputs=[segments_preview]
    )

    prompt_audio.upload(update_prompt_audio,
                         inputs=[],
                         outputs=[gen_button])

    gen_button.click(gen_single,
                     inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
                            vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
                             emo_text,emo_random,
                             max_text_tokens_per_segment,
                             *advanced_params,
                     ],
                     outputs=[output_audio])



if __name__ == "__main__":
    demo.queue(20)
    demo.launch(server_name=cmd_args.host, server_port=cmd_args.port)