Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,730 Bytes
ae91ef9 fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 506ecd3 a70eba7 fba9477 04be12f c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f ae91ef9 fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 c4fe16f fba9477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import spaces
import json
import os
import sys
import threading
import time
import warnings
import numpy as np
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
import pandas as pd
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
sys.path.append(os.path.join(current_dir, "indextts"))
import argparse
parser = argparse.ArgumentParser(
description="IndexTTS WebUI",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
parser.add_argument("--model_dir", type=str, default="./checkpoints", help="Model checkpoints directory")
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
parser.add_argument("--deepspeed", action="store_true", default=False, help="Use DeepSpeed to accelerate if available")
parser.add_argument("--cuda_kernel", action="store_true", default=False, help="Use CUDA kernel for inference if available")
parser.add_argument("--gui_seg_tokens", type=int, default=120, help="GUI: Max tokens per generation segment")
cmd_args = parser.parse_args()
from tools.download_files import download_model_from_huggingface
download_model_from_huggingface(os.path.join(current_dir,"checkpoints"),
os.path.join(current_dir, "checkpoints","hf_cache"))
import gradio as gr
from indextts.infer_v2 import IndexTTS2
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(language="Auto")
MODE = 'local'
tts = IndexTTS2(model_dir=cmd_args.model_dir,
cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
use_fp16=cmd_args.fp16,
use_deepspeed=cmd_args.deepspeed,
use_cuda_kernel=cmd_args.cuda_kernel,
)
# 支持的语言列表
LANGUAGES = {
"中文": "zh_CN",
"English": "en_US"
}
EMO_CHOICES = [i18n("与音色参考音频相同"),
i18n("使用情感参考音频"),
i18n("使用情感向量控制"),
i18n("使用情感描述文本控制")]
EMO_CHOICES_BASE = EMO_CHOICES[:3] # 基础选项
EMO_CHOICES_EXPERIMENTAL = EMO_CHOICES # 全部选项(包括文本描述)
os.makedirs("outputs/tasks",exist_ok=True)
os.makedirs("prompts",exist_ok=True)
MAX_LENGTH_TO_USE_SPEED = 70
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
example_cases = []
for line in f:
line = line.strip()
if not line:
continue
example = json.loads(line)
if example.get("emo_audio",None):
emo_audio_path = os.path.join("examples",example["emo_audio"])
else:
emo_audio_path = None
example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
EMO_CHOICES[example.get("emo_mode",0)],
example.get("text"),
emo_audio_path,
example.get("emo_weight",1.0),
example.get("emo_text",""),
example.get("emo_vec_1",0),
example.get("emo_vec_2",0),
example.get("emo_vec_3",0),
example.get("emo_vec_4",0),
example.get("emo_vec_5",0),
example.get("emo_vec_6",0),
example.get("emo_vec_7",0),
example.get("emo_vec_8",0),
example.get("emo_text") is not None]
)
def normalize_emo_vec(emo_vec):
# emotion factors for better user experience
k_vec = [0.75,0.70,0.80,0.80,0.75,0.75,0.55,0.45]
tmp = np.array(k_vec) * np.array(emo_vec)
if np.sum(tmp) > 0.8:
tmp = tmp * 0.8/ np.sum(tmp)
return tmp.tolist()
@spaces.GPU
def gen_single(emo_control_method,prompt, text,
emo_ref_path, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_segment=120,
*args, progress=gr.Progress()):
output_path = None
if not output_path:
output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
# set gradio progress
tts.gr_progress = progress
do_sample, top_p, top_k, temperature, \
length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
kwargs = {
"do_sample": bool(do_sample),
"top_p": float(top_p),
"top_k": int(top_k) if int(top_k) > 0 else None,
"temperature": float(temperature),
"length_penalty": float(length_penalty),
"num_beams": num_beams,
"repetition_penalty": float(repetition_penalty),
"max_mel_tokens": int(max_mel_tokens),
# "typical_sampling": bool(typical_sampling),
# "typical_mass": float(typical_mass),
}
if type(emo_control_method) is not int:
emo_control_method = emo_control_method.value
if emo_control_method == 0: # emotion from speaker
emo_ref_path = None # remove external reference audio
if emo_control_method == 1: # emotion from reference audio
# normalize emo_alpha for better user experience
emo_weight = emo_weight * 0.8
pass
if emo_control_method == 2: # emotion from custom vectors
vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
vec = normalize_emo_vec(vec)
else:
# don't use the emotion vector inputs for the other modes
vec = None
if emo_text == "":
# erase empty emotion descriptions; `infer()` will then automatically use the main prompt
emo_text = None
print(f"Emo control mode:{emo_control_method},weight:{emo_weight},vec:{vec}")
output = tts.infer(spk_audio_prompt=prompt, text=text,
output_path=output_path,
emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
emo_vector=vec,
use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
verbose=cmd_args.verbose,
max_text_tokens_per_segment=int(max_text_tokens_per_segment),
**kwargs)
return gr.update(value=output,visible=True)
def update_prompt_audio():
update_button = gr.update(interactive=True)
return update_button
with gr.Blocks(title="IndexTTS Demo") as demo:
mutex = threading.Lock()
gr.HTML('''
<h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2>
<p align="center">
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a>
</p>
''')
with gr.Tab(i18n("音频生成")):
with gr.Row():
os.makedirs("prompts",exist_ok=True)
prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
sources=["upload","microphone"],type="filepath")
prompt_list = os.listdir("prompts")
default = ''
if prompt_list:
default = prompt_list[0]
with gr.Column():
input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
experimental_checkbox = gr.Checkbox(label=i18n("显示实验功能"),value=False)
with gr.Accordion(i18n("功能设置")):
# 情感控制选项部分
with gr.Row():
emo_control_method = gr.Radio(
choices=EMO_CHOICES_BASE,
type="index",
value=EMO_CHOICES_BASE[0],label=i18n("情感控制方式"))
# 情感参考音频部分
with gr.Group(visible=False) as emotion_reference_group:
with gr.Row():
emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")
# 情感随机采样
with gr.Row(visible=False) as emotion_randomize_group:
emo_random = gr.Checkbox(label=i18n("情感随机采样"), value=False)
# 情感向量控制部分
with gr.Group(visible=False) as emotion_vector_group:
with gr.Row():
with gr.Column():
vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
with gr.Column():
vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.0, value=0.0, step=0.05)
with gr.Group(visible=False) as emo_text_group:
with gr.Row():
emo_text = gr.Textbox(label=i18n("情感描述文本"),
placeholder=i18n("请输入情绪描述(或留空以自动使用目标文本作为情绪描述)"),
value="",
info=i18n("例如:委屈巴巴、危险在悄悄逼近"))
with gr.Row(visible=False) as emo_weight_group:
emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.0, value=0.8, step=0.01)
with gr.Accordion(i18n("高级生成参数设置"), open=False,visible=False) as advanced_settings_group:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')} [Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)._")
with gr.Row():
do_sample = gr.Checkbox(label="do_sample", value=True, info=i18n("是否进行采样"))
temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
with gr.Row():
top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
with gr.Row():
repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info=i18n("生成Token最大数量,过小导致音频被截断"), key="max_mel_tokens")
# with gr.Row():
# typical_sampling = gr.Checkbox(label="typical_sampling", value=False, info="不建议使用")
# typical_mass = gr.Slider(label="typical_mass", value=0.9, minimum=0.0, maximum=1.0, step=0.1)
with gr.Column(scale=2):
gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
with gr.Row():
initial_value = max(20, min(tts.cfg.gpt.max_text_tokens, cmd_args.gui_seg_tokens))
max_text_tokens_per_segment = gr.Slider(
label=i18n("分句最大Token数"), value=initial_value, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_segment",
info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"),
)
with gr.Accordion(i18n("预览分句结果"), open=True) as segments_settings:
segments_preview = gr.Dataframe(
headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
key="segments_preview",
wrap=True,
)
advanced_params = [
do_sample, top_p, top_k, temperature,
length_penalty, num_beams, repetition_penalty, max_mel_tokens,
# typical_sampling, typical_mass,
]
if len(example_cases) > 2:
example_table = gr.Examples(
examples=example_cases[:-2],
examples_per_page=20,
inputs=[prompt_audio,
emo_control_method,
input_text_single,
emo_upload,
emo_weight,
emo_text,
vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8,experimental_checkbox]
)
elif len(example_cases) > 0:
example_table = gr.Examples(
examples=example_cases,
examples_per_page=20,
inputs=[prompt_audio,
emo_control_method,
input_text_single,
emo_upload,
emo_weight,
emo_text,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, experimental_checkbox]
)
def on_input_text_change(text, max_text_tokens_per_segment):
if text and len(text) > 0:
text_tokens_list = tts.tokenizer.tokenize(text)
segments = tts.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment=int(max_text_tokens_per_segment))
data = []
for i, s in enumerate(segments):
segment_str = ''.join(s)
tokens_count = len(s)
data.append([i, segment_str, tokens_count])
return {
segments_preview: gr.update(value=data, visible=True, type="array"),
}
else:
df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
return {
segments_preview: gr.update(value=df),
}
def on_method_select(emo_control_method):
if emo_control_method == 1: # emotion reference audio
return (gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True)
)
elif emo_control_method == 2: # emotion vectors
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
)
elif emo_control_method == 3: # emotion text description
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True)
)
else: # 0: same as speaker voice
return (gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
def on_experimental_change(is_exp):
# 切换情感控制选项
# 第三个返回值实际没有起作用
if is_exp:
return gr.update(choices=EMO_CHOICES_EXPERIMENTAL, value=EMO_CHOICES_EXPERIMENTAL[0]), gr.update(visible=True),gr.update(value=example_cases)
else:
return gr.update(choices=EMO_CHOICES_BASE, value=EMO_CHOICES_BASE[0]), gr.update(visible=False),gr.update(value=example_cases[:-2])
emo_control_method.select(on_method_select,
inputs=[emo_control_method],
outputs=[emotion_reference_group,
emotion_randomize_group,
emotion_vector_group,
emo_text_group,
emo_weight_group]
)
input_text_single.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_segment],
outputs=[segments_preview]
)
experimental_checkbox.change(
on_experimental_change,
inputs=[experimental_checkbox],
outputs=[emo_control_method, advanced_settings_group,example_table.dataset] # 高级参数Accordion
)
max_text_tokens_per_segment.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_segment],
outputs=[segments_preview]
)
prompt_audio.upload(update_prompt_audio,
inputs=[],
outputs=[gen_button])
gen_button.click(gen_single,
inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_segment,
*advanced_params,
],
outputs=[output_audio])
if __name__ == "__main__":
demo.queue(20)
demo.launch(server_name=cmd_args.host, server_port=cmd_args.port)
|