Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| import random | |
| import torch | |
| import torchaudio | |
| MATPLOTLIB_FLAG = False | |
| def load_audio(audiopath, sampling_rate): | |
| audio, sr = torchaudio.load(audiopath) | |
| #print(f"wave shape: {audio.shape}, sample_rate: {sr}") | |
| if audio.size(0) > 1: # mix to mono | |
| audio = audio[0].unsqueeze(0) | |
| if sr != sampling_rate: | |
| try: | |
| audio = torchaudio.functional.resample(audio, sr, sampling_rate) | |
| except Exception as e: | |
| print(f"Warning: {audiopath}, wave shape: {audio.shape}, sample_rate: {sr}") | |
| return None | |
| # clip audio invalid values | |
| audio.clip_(-1, 1) | |
| return audio | |
| def tokenize_by_CJK_char(line: str) -> str: | |
| """ | |
| Tokenize a line of text with CJK char. | |
| Note: All return charaters will be upper case. | |
| Example: | |
| input = "你好世界是 hello world 的中文" | |
| output = "你 好 世 界 是 HELLO WORLD 的 中 文" | |
| Args: | |
| line: | |
| The input text. | |
| Return: | |
| A new string tokenize by CJK char. | |
| """ | |
| # The CJK ranges is from https://github.com/alvations/nltk/blob/79eed6ddea0d0a2c212c1060b477fc268fec4d4b/nltk/tokenize/util.py | |
| pattern = re.compile( | |
| r"([\u1100-\u11ff\u2e80-\ua4cf\ua840-\uD7AF\uF900-\uFAFF\uFE30-\uFE4F\uFF65-\uFFDC\U00020000-\U0002FFFF])" | |
| ) | |
| chars = pattern.split(line.strip().upper()) | |
| return " ".join([w.strip() for w in chars if w.strip()]) | |
| def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
| """Make mask tensor containing indices of padded part. | |
| See description of make_non_pad_mask. | |
| Args: | |
| lengths (torch.Tensor): Batch of lengths (B,). | |
| Returns: | |
| torch.Tensor: Mask tensor containing indices of padded part. | |
| Examples: | |
| >>> lengths = [5, 3, 2] | |
| >>> make_pad_mask(lengths) | |
| masks = [[0, 0, 0, 0 ,0], | |
| [0, 0, 0, 1, 1], | |
| [0, 0, 1, 1, 1]] | |
| """ | |
| batch_size = lengths.size(0) | |
| max_len = max_len if max_len > 0 else lengths.max().item() | |
| seq_range = torch.arange(0, | |
| max_len, | |
| dtype=torch.int64, | |
| device=lengths.device) | |
| seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) | |
| seq_length_expand = lengths.unsqueeze(-1) | |
| mask = seq_range_expand >= seq_length_expand | |
| return mask | |
| def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: | |
| """ | |
| Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. | |
| Args: | |
| x (Tensor): Input tensor. | |
| clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. | |
| Returns: | |
| Tensor: Element-wise logarithm of the input tensor with clipping applied. | |
| """ | |
| return torch.log(torch.clip(x, min=clip_val)) | |