Spaces:
Running
on
Zero
Running
on
Zero
ResearcherXman
commited on
Commit
·
2192aaf
1
Parent(s):
ec7fc1c
fix
Browse files- app.py +1 -2
- model_util.py +0 -472
app.py
CHANGED
|
@@ -18,7 +18,6 @@ from insightface.app import FaceAnalysis
|
|
| 18 |
|
| 19 |
from style_template import styles
|
| 20 |
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
|
| 21 |
-
from model_util import load_models_xl, get_torch_device
|
| 22 |
from controlnet_util import openpose, get_depth_map, get_canny_image
|
| 23 |
|
| 24 |
import gradio as gr
|
|
@@ -27,7 +26,7 @@ import spaces
|
|
| 27 |
|
| 28 |
# global variable
|
| 29 |
MAX_SEED = np.iinfo(np.int32).max
|
| 30 |
-
device =
|
| 31 |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
| 32 |
STYLE_NAMES = list(styles.keys())
|
| 33 |
DEFAULT_STYLE_NAME = "Watercolor"
|
|
|
|
| 18 |
|
| 19 |
from style_template import styles
|
| 20 |
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
|
|
|
|
| 21 |
from controlnet_util import openpose, get_depth_map, get_canny_image
|
| 22 |
|
| 23 |
import gradio as gr
|
|
|
|
| 26 |
|
| 27 |
# global variable
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
| 31 |
STYLE_NAMES = list(styles.keys())
|
| 32 |
DEFAULT_STYLE_NAME = "Watercolor"
|
model_util.py
DELETED
|
@@ -1,472 +0,0 @@
|
|
| 1 |
-
from typing import Literal, Union, Optional, Tuple, List
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
| 5 |
-
from diffusers import (
|
| 6 |
-
UNet2DConditionModel,
|
| 7 |
-
SchedulerMixin,
|
| 8 |
-
StableDiffusionPipeline,
|
| 9 |
-
StableDiffusionXLPipeline,
|
| 10 |
-
AutoencoderKL,
|
| 11 |
-
)
|
| 12 |
-
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
| 13 |
-
convert_ldm_unet_checkpoint,
|
| 14 |
-
)
|
| 15 |
-
from safetensors.torch import load_file
|
| 16 |
-
from diffusers.schedulers import (
|
| 17 |
-
DDIMScheduler,
|
| 18 |
-
DDPMScheduler,
|
| 19 |
-
LMSDiscreteScheduler,
|
| 20 |
-
EulerDiscreteScheduler,
|
| 21 |
-
EulerAncestralDiscreteScheduler,
|
| 22 |
-
UniPCMultistepScheduler,
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
from omegaconf import OmegaConf
|
| 26 |
-
|
| 27 |
-
# DiffUsers版StableDiffusionのモデルパラメータ
|
| 28 |
-
NUM_TRAIN_TIMESTEPS = 1000
|
| 29 |
-
BETA_START = 0.00085
|
| 30 |
-
BETA_END = 0.0120
|
| 31 |
-
|
| 32 |
-
UNET_PARAMS_MODEL_CHANNELS = 320
|
| 33 |
-
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
| 34 |
-
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
| 35 |
-
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32`
|
| 36 |
-
UNET_PARAMS_IN_CHANNELS = 4
|
| 37 |
-
UNET_PARAMS_OUT_CHANNELS = 4
|
| 38 |
-
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
| 39 |
-
UNET_PARAMS_CONTEXT_DIM = 768
|
| 40 |
-
UNET_PARAMS_NUM_HEADS = 8
|
| 41 |
-
# UNET_PARAMS_USE_LINEAR_PROJECTION = False
|
| 42 |
-
|
| 43 |
-
VAE_PARAMS_Z_CHANNELS = 4
|
| 44 |
-
VAE_PARAMS_RESOLUTION = 256
|
| 45 |
-
VAE_PARAMS_IN_CHANNELS = 3
|
| 46 |
-
VAE_PARAMS_OUT_CH = 3
|
| 47 |
-
VAE_PARAMS_CH = 128
|
| 48 |
-
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
| 49 |
-
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
| 50 |
-
|
| 51 |
-
# V2
|
| 52 |
-
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
| 53 |
-
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
| 54 |
-
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True
|
| 55 |
-
|
| 56 |
-
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
|
| 57 |
-
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
|
| 58 |
-
|
| 59 |
-
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a", "euler", "uniPC"]
|
| 60 |
-
|
| 61 |
-
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
|
| 62 |
-
|
| 63 |
-
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def load_checkpoint_with_text_encoder_conversion(ckpt_path: str, device="cpu"):
|
| 67 |
-
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
| 68 |
-
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
| 69 |
-
(
|
| 70 |
-
"cond_stage_model.transformer.embeddings.",
|
| 71 |
-
"cond_stage_model.transformer.text_model.embeddings.",
|
| 72 |
-
),
|
| 73 |
-
(
|
| 74 |
-
"cond_stage_model.transformer.encoder.",
|
| 75 |
-
"cond_stage_model.transformer.text_model.encoder.",
|
| 76 |
-
),
|
| 77 |
-
(
|
| 78 |
-
"cond_stage_model.transformer.final_layer_norm.",
|
| 79 |
-
"cond_stage_model.transformer.text_model.final_layer_norm.",
|
| 80 |
-
),
|
| 81 |
-
]
|
| 82 |
-
|
| 83 |
-
if ckpt_path.endswith(".safetensors"):
|
| 84 |
-
checkpoint = None
|
| 85 |
-
state_dict = load_file(ckpt_path) # , device) # may causes error
|
| 86 |
-
else:
|
| 87 |
-
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 88 |
-
if "state_dict" in checkpoint:
|
| 89 |
-
state_dict = checkpoint["state_dict"]
|
| 90 |
-
else:
|
| 91 |
-
state_dict = checkpoint
|
| 92 |
-
checkpoint = None
|
| 93 |
-
|
| 94 |
-
key_reps = []
|
| 95 |
-
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
| 96 |
-
for key in state_dict.keys():
|
| 97 |
-
if key.startswith(rep_from):
|
| 98 |
-
new_key = rep_to + key[len(rep_from) :]
|
| 99 |
-
key_reps.append((key, new_key))
|
| 100 |
-
|
| 101 |
-
for key, new_key in key_reps:
|
| 102 |
-
state_dict[new_key] = state_dict[key]
|
| 103 |
-
del state_dict[key]
|
| 104 |
-
|
| 105 |
-
return checkpoint, state_dict
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False):
|
| 109 |
-
"""
|
| 110 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
| 111 |
-
"""
|
| 112 |
-
# unet_params = original_config.model.params.unet_config.params
|
| 113 |
-
|
| 114 |
-
block_out_channels = [
|
| 115 |
-
UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT
|
| 116 |
-
]
|
| 117 |
-
|
| 118 |
-
down_block_types = []
|
| 119 |
-
resolution = 1
|
| 120 |
-
for i in range(len(block_out_channels)):
|
| 121 |
-
block_type = (
|
| 122 |
-
"CrossAttnDownBlock2D"
|
| 123 |
-
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
| 124 |
-
else "DownBlock2D"
|
| 125 |
-
)
|
| 126 |
-
down_block_types.append(block_type)
|
| 127 |
-
if i != len(block_out_channels) - 1:
|
| 128 |
-
resolution *= 2
|
| 129 |
-
|
| 130 |
-
up_block_types = []
|
| 131 |
-
for i in range(len(block_out_channels)):
|
| 132 |
-
block_type = (
|
| 133 |
-
"CrossAttnUpBlock2D"
|
| 134 |
-
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
| 135 |
-
else "UpBlock2D"
|
| 136 |
-
)
|
| 137 |
-
up_block_types.append(block_type)
|
| 138 |
-
resolution //= 2
|
| 139 |
-
|
| 140 |
-
config = dict(
|
| 141 |
-
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
| 142 |
-
in_channels=UNET_PARAMS_IN_CHANNELS,
|
| 143 |
-
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
| 144 |
-
down_block_types=tuple(down_block_types),
|
| 145 |
-
up_block_types=tuple(up_block_types),
|
| 146 |
-
block_out_channels=tuple(block_out_channels),
|
| 147 |
-
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
| 148 |
-
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM
|
| 149 |
-
if not v2
|
| 150 |
-
else V2_UNET_PARAMS_CONTEXT_DIM,
|
| 151 |
-
attention_head_dim=UNET_PARAMS_NUM_HEADS
|
| 152 |
-
if not v2
|
| 153 |
-
else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
| 154 |
-
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION,
|
| 155 |
-
)
|
| 156 |
-
if v2 and use_linear_projection_in_v2:
|
| 157 |
-
config["use_linear_projection"] = True
|
| 158 |
-
|
| 159 |
-
return config
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
def load_diffusers_model(
|
| 163 |
-
pretrained_model_name_or_path: str,
|
| 164 |
-
v2: bool = False,
|
| 165 |
-
clip_skip: Optional[int] = None,
|
| 166 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 167 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
| 168 |
-
if v2:
|
| 169 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
| 170 |
-
TOKENIZER_V2_MODEL_NAME,
|
| 171 |
-
subfolder="tokenizer",
|
| 172 |
-
torch_dtype=weight_dtype,
|
| 173 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 174 |
-
)
|
| 175 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 176 |
-
pretrained_model_name_or_path,
|
| 177 |
-
subfolder="text_encoder",
|
| 178 |
-
# default is clip skip 2
|
| 179 |
-
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
|
| 180 |
-
torch_dtype=weight_dtype,
|
| 181 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 182 |
-
)
|
| 183 |
-
else:
|
| 184 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
| 185 |
-
TOKENIZER_V1_MODEL_NAME,
|
| 186 |
-
subfolder="tokenizer",
|
| 187 |
-
torch_dtype=weight_dtype,
|
| 188 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 189 |
-
)
|
| 190 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 191 |
-
pretrained_model_name_or_path,
|
| 192 |
-
subfolder="text_encoder",
|
| 193 |
-
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
|
| 194 |
-
torch_dtype=weight_dtype,
|
| 195 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
unet = UNet2DConditionModel.from_pretrained(
|
| 199 |
-
pretrained_model_name_or_path,
|
| 200 |
-
subfolder="unet",
|
| 201 |
-
torch_dtype=weight_dtype,
|
| 202 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
| 206 |
-
|
| 207 |
-
return tokenizer, text_encoder, unet, vae
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
def load_checkpoint_model(
|
| 211 |
-
checkpoint_path: str,
|
| 212 |
-
v2: bool = False,
|
| 213 |
-
clip_skip: Optional[int] = None,
|
| 214 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 215 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
| 216 |
-
pipe = StableDiffusionPipeline.from_single_file(
|
| 217 |
-
checkpoint_path,
|
| 218 |
-
upcast_attention=True if v2 else False,
|
| 219 |
-
torch_dtype=weight_dtype,
|
| 220 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
_, state_dict = load_checkpoint_with_text_encoder_conversion(checkpoint_path)
|
| 224 |
-
unet_config = create_unet_diffusers_config(v2, use_linear_projection_in_v2=v2)
|
| 225 |
-
unet_config["class_embed_type"] = None
|
| 226 |
-
unet_config["addition_embed_type"] = None
|
| 227 |
-
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
|
| 228 |
-
unet = UNet2DConditionModel(**unet_config)
|
| 229 |
-
unet.load_state_dict(converted_unet_checkpoint)
|
| 230 |
-
|
| 231 |
-
tokenizer = pipe.tokenizer
|
| 232 |
-
text_encoder = pipe.text_encoder
|
| 233 |
-
vae = pipe.vae
|
| 234 |
-
if clip_skip is not None:
|
| 235 |
-
if v2:
|
| 236 |
-
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
|
| 237 |
-
else:
|
| 238 |
-
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
|
| 239 |
-
|
| 240 |
-
del pipe
|
| 241 |
-
|
| 242 |
-
return tokenizer, text_encoder, unet, vae
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
def load_models(
|
| 246 |
-
pretrained_model_name_or_path: str,
|
| 247 |
-
scheduler_name: str,
|
| 248 |
-
v2: bool = False,
|
| 249 |
-
v_pred: bool = False,
|
| 250 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 251 |
-
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
|
| 252 |
-
if pretrained_model_name_or_path.endswith(
|
| 253 |
-
".ckpt"
|
| 254 |
-
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
| 255 |
-
tokenizer, text_encoder, unet, vae = load_checkpoint_model(
|
| 256 |
-
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
| 257 |
-
)
|
| 258 |
-
else: # diffusers
|
| 259 |
-
tokenizer, text_encoder, unet, vae = load_diffusers_model(
|
| 260 |
-
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
-
if scheduler_name:
|
| 264 |
-
scheduler = create_noise_scheduler(
|
| 265 |
-
scheduler_name,
|
| 266 |
-
prediction_type="v_prediction" if v_pred else "epsilon",
|
| 267 |
-
)
|
| 268 |
-
else:
|
| 269 |
-
scheduler = None
|
| 270 |
-
|
| 271 |
-
return tokenizer, text_encoder, unet, scheduler, vae
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
def load_diffusers_model_xl(
|
| 275 |
-
pretrained_model_name_or_path: str,
|
| 276 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 277 |
-
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
| 278 |
-
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
|
| 279 |
-
|
| 280 |
-
tokenizers = [
|
| 281 |
-
CLIPTokenizer.from_pretrained(
|
| 282 |
-
pretrained_model_name_or_path,
|
| 283 |
-
subfolder="tokenizer",
|
| 284 |
-
torch_dtype=weight_dtype,
|
| 285 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 286 |
-
),
|
| 287 |
-
CLIPTokenizer.from_pretrained(
|
| 288 |
-
pretrained_model_name_or_path,
|
| 289 |
-
subfolder="tokenizer_2",
|
| 290 |
-
torch_dtype=weight_dtype,
|
| 291 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 292 |
-
pad_token_id=0, # same as open clip
|
| 293 |
-
),
|
| 294 |
-
]
|
| 295 |
-
|
| 296 |
-
text_encoders = [
|
| 297 |
-
CLIPTextModel.from_pretrained(
|
| 298 |
-
pretrained_model_name_or_path,
|
| 299 |
-
subfolder="text_encoder",
|
| 300 |
-
torch_dtype=weight_dtype,
|
| 301 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 302 |
-
),
|
| 303 |
-
CLIPTextModelWithProjection.from_pretrained(
|
| 304 |
-
pretrained_model_name_or_path,
|
| 305 |
-
subfolder="text_encoder_2",
|
| 306 |
-
torch_dtype=weight_dtype,
|
| 307 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 308 |
-
),
|
| 309 |
-
]
|
| 310 |
-
|
| 311 |
-
unet = UNet2DConditionModel.from_pretrained(
|
| 312 |
-
pretrained_model_name_or_path,
|
| 313 |
-
subfolder="unet",
|
| 314 |
-
torch_dtype=weight_dtype,
|
| 315 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 316 |
-
)
|
| 317 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
| 318 |
-
return tokenizers, text_encoders, unet, vae
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
def load_checkpoint_model_xl(
|
| 322 |
-
checkpoint_path: str,
|
| 323 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 324 |
-
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
| 325 |
-
pipe = StableDiffusionXLPipeline.from_single_file(
|
| 326 |
-
checkpoint_path,
|
| 327 |
-
torch_dtype=weight_dtype,
|
| 328 |
-
cache_dir=DIFFUSERS_CACHE_DIR,
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
unet = pipe.unet
|
| 332 |
-
vae = pipe.vae
|
| 333 |
-
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
|
| 334 |
-
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
| 335 |
-
if len(text_encoders) == 2:
|
| 336 |
-
text_encoders[1].pad_token_id = 0
|
| 337 |
-
|
| 338 |
-
del pipe
|
| 339 |
-
|
| 340 |
-
return tokenizers, text_encoders, unet, vae
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
def load_models_xl(
|
| 344 |
-
pretrained_model_name_or_path: str,
|
| 345 |
-
scheduler_name: str,
|
| 346 |
-
weight_dtype: torch.dtype = torch.float32,
|
| 347 |
-
noise_scheduler_kwargs=None,
|
| 348 |
-
) -> Tuple[
|
| 349 |
-
List[CLIPTokenizer],
|
| 350 |
-
List[SDXL_TEXT_ENCODER_TYPE],
|
| 351 |
-
UNet2DConditionModel,
|
| 352 |
-
SchedulerMixin,
|
| 353 |
-
]:
|
| 354 |
-
if pretrained_model_name_or_path.endswith(
|
| 355 |
-
".ckpt"
|
| 356 |
-
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
| 357 |
-
(tokenizers, text_encoders, unet, vae) = load_checkpoint_model_xl(
|
| 358 |
-
pretrained_model_name_or_path, weight_dtype
|
| 359 |
-
)
|
| 360 |
-
else: # diffusers
|
| 361 |
-
(tokenizers, text_encoders, unet, vae) = load_diffusers_model_xl(
|
| 362 |
-
pretrained_model_name_or_path, weight_dtype
|
| 363 |
-
)
|
| 364 |
-
if scheduler_name:
|
| 365 |
-
scheduler = create_noise_scheduler(scheduler_name, noise_scheduler_kwargs)
|
| 366 |
-
else:
|
| 367 |
-
scheduler = None
|
| 368 |
-
|
| 369 |
-
return tokenizers, text_encoders, unet, scheduler, vae
|
| 370 |
-
|
| 371 |
-
def create_noise_scheduler(
|
| 372 |
-
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
|
| 373 |
-
noise_scheduler_kwargs=None,
|
| 374 |
-
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
|
| 375 |
-
) -> SchedulerMixin:
|
| 376 |
-
name = scheduler_name.lower().replace(" ", "_")
|
| 377 |
-
if name.lower() == "ddim":
|
| 378 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
|
| 379 |
-
scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
| 380 |
-
elif name.lower() == "ddpm":
|
| 381 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
|
| 382 |
-
scheduler = DDPMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
| 383 |
-
elif name.lower() == "lms":
|
| 384 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
|
| 385 |
-
scheduler = LMSDiscreteScheduler(
|
| 386 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
| 387 |
-
)
|
| 388 |
-
elif name.lower() == "euler_a":
|
| 389 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
| 390 |
-
scheduler = EulerAncestralDiscreteScheduler(
|
| 391 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
| 392 |
-
)
|
| 393 |
-
elif name.lower() == "euler":
|
| 394 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
| 395 |
-
scheduler = EulerDiscreteScheduler(
|
| 396 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
| 397 |
-
)
|
| 398 |
-
elif name.lower() == "unipc":
|
| 399 |
-
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/unipc
|
| 400 |
-
scheduler = UniPCMultistepScheduler(
|
| 401 |
-
**OmegaConf.to_container(noise_scheduler_kwargs)
|
| 402 |
-
)
|
| 403 |
-
else:
|
| 404 |
-
raise ValueError(f"Unknown scheduler name: {name}")
|
| 405 |
-
|
| 406 |
-
return scheduler
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
def torch_gc():
|
| 410 |
-
import gc
|
| 411 |
-
|
| 412 |
-
gc.collect()
|
| 413 |
-
if torch.cuda.is_available():
|
| 414 |
-
with torch.cuda.device("cuda"):
|
| 415 |
-
torch.cuda.empty_cache()
|
| 416 |
-
torch.cuda.ipc_collect()
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
from enum import Enum
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
class CPUState(Enum):
|
| 423 |
-
GPU = 0
|
| 424 |
-
CPU = 1
|
| 425 |
-
MPS = 2
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
cpu_state = CPUState.GPU
|
| 429 |
-
xpu_available = False
|
| 430 |
-
directml_enabled = False
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
def is_intel_xpu():
|
| 434 |
-
global cpu_state
|
| 435 |
-
global xpu_available
|
| 436 |
-
if cpu_state == CPUState.GPU:
|
| 437 |
-
if xpu_available:
|
| 438 |
-
return True
|
| 439 |
-
return False
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
try:
|
| 443 |
-
import intel_extension_for_pytorch as ipex
|
| 444 |
-
|
| 445 |
-
if torch.xpu.is_available():
|
| 446 |
-
xpu_available = True
|
| 447 |
-
except:
|
| 448 |
-
pass
|
| 449 |
-
|
| 450 |
-
try:
|
| 451 |
-
if torch.backends.mps.is_available():
|
| 452 |
-
cpu_state = CPUState.MPS
|
| 453 |
-
import torch.mps
|
| 454 |
-
except:
|
| 455 |
-
pass
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
def get_torch_device():
|
| 459 |
-
global directml_enabled
|
| 460 |
-
global cpu_state
|
| 461 |
-
if directml_enabled:
|
| 462 |
-
global directml_device
|
| 463 |
-
return directml_device
|
| 464 |
-
if cpu_state == CPUState.MPS:
|
| 465 |
-
return torch.device("mps")
|
| 466 |
-
if cpu_state == CPUState.CPU:
|
| 467 |
-
return torch.device("cpu")
|
| 468 |
-
else:
|
| 469 |
-
if is_intel_xpu():
|
| 470 |
-
return torch.device("xpu")
|
| 471 |
-
else:
|
| 472 |
-
return torch.device(torch.cuda.current_device())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|