Update app.py
Browse files
app.py
CHANGED
|
@@ -1,314 +1,314 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
-
|
| 7 |
-
from src.about import (
|
| 8 |
-
CITATION_BUTTON_LABEL,
|
| 9 |
-
CITATION_BUTTON_TEXT,
|
| 10 |
-
EVALUATION_QUEUE_TEXT,
|
| 11 |
-
INTRODUCTION_TEXT,
|
| 12 |
-
LLM_BENCHMARKS_TEXT,
|
| 13 |
-
TITLE,
|
| 14 |
-
)
|
| 15 |
-
from src.display.css_html_js import custom_css
|
| 16 |
-
from src.display.utils import (
|
| 17 |
-
BENCHMARK_COLS,
|
| 18 |
-
COLS,
|
| 19 |
-
EVAL_COLS,
|
| 20 |
-
EVAL_TYPES,
|
| 21 |
-
NUMERIC_INTERVALS,
|
| 22 |
-
TYPES,
|
| 23 |
-
AutoEvalColumn,
|
| 24 |
-
ModelType,
|
| 25 |
-
fields,
|
| 26 |
-
WeightType,
|
| 27 |
-
Precision
|
| 28 |
-
)
|
| 29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 30 |
-
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 31 |
-
# from src.submission.submit import add_new_eval
|
| 32 |
-
from PIL import Image
|
| 33 |
-
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
| 34 |
-
import copy
|
| 35 |
-
|
| 36 |
-
def load_data(data_path):
|
| 37 |
-
columns = ['Unlearned_Methods','
|
| 38 |
-
columns_sorted = [
|
| 39 |
-
|
| 40 |
-
df = pd.read_csv(data_path).dropna()
|
| 41 |
-
df['Post-ASR'] = df['Post-ASR'].round(0)
|
| 42 |
-
|
| 43 |
-
# rank according to the Score column
|
| 44 |
-
df = df.sort_values(by='Post-ASR', ascending=False)
|
| 45 |
-
# reorder the columns
|
| 46 |
-
df = df[columns_sorted]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
return df
|
| 50 |
-
|
| 51 |
-
def restart_space():
|
| 52 |
-
API.restart_space(repo_id=REPO_ID)
|
| 53 |
-
|
| 54 |
-
# try:
|
| 55 |
-
# print(EVAL_REQUESTS_PATH)
|
| 56 |
-
# snapshot_download(
|
| 57 |
-
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 58 |
-
# )
|
| 59 |
-
# except Exception:
|
| 60 |
-
# restart_space()
|
| 61 |
-
# try:
|
| 62 |
-
# print(EVAL_RESULTS_PATH)
|
| 63 |
-
# snapshot_download(
|
| 64 |
-
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 65 |
-
# )
|
| 66 |
-
# except Exception:
|
| 67 |
-
# restart_space()
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 71 |
-
# leaderboard_df = original_df.copy()
|
| 72 |
-
|
| 73 |
-
# (
|
| 74 |
-
# finished_eval_queue_df,
|
| 75 |
-
# running_eval_queue_df,
|
| 76 |
-
# pending_eval_queue_df,
|
| 77 |
-
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 78 |
-
|
| 79 |
-
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
| 80 |
-
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
| 81 |
-
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number', 'number']
|
| 82 |
-
files = ['
|
| 83 |
-
csv_path='./assets/'+files[0]+'.csv'
|
| 84 |
-
df_results = load_data(csv_path)
|
| 85 |
-
methods = list(set(df_results['Unlearned_Methods']))
|
| 86 |
-
df_results_init = df_results.copy()[show_columns]
|
| 87 |
-
|
| 88 |
-
def update_table(
|
| 89 |
-
hidden_df: pd.DataFrame,
|
| 90 |
-
model1_column: list,
|
| 91 |
-
#type_query: list,
|
| 92 |
-
#open_query: list,
|
| 93 |
-
# precision_query: str,
|
| 94 |
-
# size_query: list,
|
| 95 |
-
# show_deleted: bool,
|
| 96 |
-
query: str,
|
| 97 |
-
):
|
| 98 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 99 |
-
# filtered_df = filter_queries(query, filtered_df)
|
| 100 |
-
# df = select_columns(filtered_df, columns)
|
| 101 |
-
filtered_df = hidden_df.copy()
|
| 102 |
-
# print(open_query)
|
| 103 |
-
|
| 104 |
-
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
|
| 105 |
-
# map_open = {'open': 'Yes', 'closed': 'No'}
|
| 106 |
-
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
|
| 107 |
-
filtered_df=select_columns(filtered_df,model1_column)
|
| 108 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 109 |
-
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
|
| 110 |
-
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
|
| 111 |
-
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
| 112 |
-
# deduplication
|
| 113 |
-
# df = df.drop_duplicates(subset=["Model"])
|
| 114 |
-
df = filtered_df.drop_duplicates()
|
| 115 |
-
# df = df[show_columns]
|
| 116 |
-
return df
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 120 |
-
return df[(df['Unlearned_Methods'].str.contains(query, case=False))]
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 124 |
-
final_df = []
|
| 125 |
-
if query != "":
|
| 126 |
-
queries = [q.strip() for q in query.split(";")]
|
| 127 |
-
for _q in queries:
|
| 128 |
-
_q = _q.strip()
|
| 129 |
-
if _q != "":
|
| 130 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 131 |
-
if len(temp_filtered_df) > 0:
|
| 132 |
-
final_df.append(temp_filtered_df)
|
| 133 |
-
if len(final_df) > 0:
|
| 134 |
-
filtered_df = pd.concat(final_df)
|
| 135 |
-
|
| 136 |
-
return filtered_df
|
| 137 |
-
|
| 138 |
-
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 139 |
-
return df[(df['Diffusion_Models'].str.contains(query, case=False))]
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 143 |
-
final_df = []
|
| 144 |
-
# if query != "":
|
| 145 |
-
# queries = [q.strip() for q in query.split(";")]
|
| 146 |
-
for _q in query:
|
| 147 |
-
print(_q)
|
| 148 |
-
if _q != "":
|
| 149 |
-
temp_filtered_df = search_table_model(filtered_df, _q)
|
| 150 |
-
if len(temp_filtered_df) > 0:
|
| 151 |
-
final_df.append(temp_filtered_df)
|
| 152 |
-
if len(final_df) > 0:
|
| 153 |
-
filtered_df = pd.concat(final_df)
|
| 154 |
-
|
| 155 |
-
return filtered_df
|
| 156 |
-
|
| 157 |
-
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
|
| 158 |
-
always_here_cols = ['Unlearned_Methods'
|
| 159 |
-
|
| 160 |
-
# We use COLS to maintain sorting
|
| 161 |
-
all_columns =['Pre-ASR','Post-ASR','
|
| 162 |
-
|
| 163 |
-
if (len(columns_1)) == 0:
|
| 164 |
-
filtered_df = df[
|
| 165 |
-
always_here_cols +
|
| 166 |
-
[c for c in all_columns if c in df.columns]
|
| 167 |
-
]
|
| 168 |
-
|
| 169 |
-
else:
|
| 170 |
-
filtered_df = df[
|
| 171 |
-
always_here_cols +
|
| 172 |
-
[c for c in all_columns if c in df.columns and (c in columns_1) ]
|
| 173 |
-
]
|
| 174 |
-
|
| 175 |
-
return filtered_df
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
demo = gr.Blocks(css=custom_css)
|
| 179 |
-
with demo:
|
| 180 |
-
gr.HTML(TITLE)
|
| 181 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 182 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
| 183 |
-
|
| 184 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 185 |
-
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
| 186 |
-
with gr.Row():
|
| 187 |
-
with gr.Column():
|
| 188 |
-
with gr.Row():
|
| 189 |
-
search_bar = gr.Textbox(
|
| 190 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 191 |
-
show_label=False,
|
| 192 |
-
elem_id="search-bar",
|
| 193 |
-
)
|
| 194 |
-
with gr.Row():
|
| 195 |
-
model1_column = gr.CheckboxGroup(
|
| 196 |
-
label="Evaluation Metrics",
|
| 197 |
-
choices=['Pre-ASR', 'Post-ASR','
|
| 198 |
-
interactive=True,
|
| 199 |
-
elem_id="column-select",
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
# with gr.Column(min_width=320):
|
| 203 |
-
# with gr.Row():
|
| 204 |
-
# shown_columns_1 = gr.CheckboxGroup(
|
| 205 |
-
# choices=["Church","Parachute","Tench", "Garbage Truck"],
|
| 206 |
-
# label="Undersirable Objects",
|
| 207 |
-
# elem_id="column-object",
|
| 208 |
-
# interactive=True,
|
| 209 |
-
# )
|
| 210 |
-
# with gr.Row():
|
| 211 |
-
# shown_columns_2 = gr.CheckboxGroup(
|
| 212 |
-
# choices=["Van Gogh"],
|
| 213 |
-
# label="Undersirable Styles",
|
| 214 |
-
# elem_id="column-style",
|
| 215 |
-
# interactive=True,
|
| 216 |
-
# )
|
| 217 |
-
# with gr.Row():
|
| 218 |
-
# shown_columns_3 = gr.CheckboxGroup(
|
| 219 |
-
# choices=["Violence","Illegal Activity","Nudity"],
|
| 220 |
-
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
|
| 221 |
-
# elem_id="column-select",
|
| 222 |
-
# interactive=True,
|
| 223 |
-
# )
|
| 224 |
-
# with gr.Row():
|
| 225 |
-
# shown_columns_4 = gr.Slider(
|
| 226 |
-
# 1, 100, value=40,
|
| 227 |
-
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
|
| 228 |
-
# interactive=True,)
|
| 229 |
-
for i in range(len(files)):
|
| 230 |
-
if files[i] == "church":
|
| 231 |
-
name = "### Unlearned Objects "+" Church"
|
| 232 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 233 |
-
elif files[i] == 'garbage':
|
| 234 |
-
name = "### Unlearned Objects "+" Garbage"
|
| 235 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 236 |
-
elif files[i] == 'tench':
|
| 237 |
-
name = "### Unlearned Objects "+" Tench"
|
| 238 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 239 |
-
elif files[i] == 'parachute':
|
| 240 |
-
name = "### Unlearned Objects "+" Parachute"
|
| 241 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 242 |
-
elif files[i] == 'vangogh':
|
| 243 |
-
name = "### Unlearned
|
| 244 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 245 |
-
elif files[i] == 'nudity':
|
| 246 |
-
name = "### Unlearned Concepts "+" Nudity"
|
| 247 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 248 |
-
elif files[i] == 'violence':
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
elif files[i] == 'illegal_activity':
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
gr.Markdown(name)
|
| 257 |
-
df_results = load_data(csv_path)
|
| 258 |
-
df_results_init = df_results.copy()[show_columns]
|
| 259 |
-
leaderboard_table = gr.components.Dataframe(
|
| 260 |
-
value = df_results,
|
| 261 |
-
datatype = TYPES,
|
| 262 |
-
elem_id = "leaderboard-table",
|
| 263 |
-
interactive = False,
|
| 264 |
-
visible=True,
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 269 |
-
value=df_results_init,
|
| 270 |
-
interactive=False,
|
| 271 |
-
visible=False,
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
search_bar.submit(
|
| 275 |
-
update_table,
|
| 276 |
-
[
|
| 277 |
-
|
| 278 |
-
hidden_leaderboard_table_for_search,
|
| 279 |
-
model1_column,
|
| 280 |
-
search_bar,
|
| 281 |
-
],
|
| 282 |
-
leaderboard_table,
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
for selector in [model1_column]:
|
| 286 |
-
selector.change(
|
| 287 |
-
update_table,
|
| 288 |
-
[
|
| 289 |
-
hidden_leaderboard_table_for_search,
|
| 290 |
-
model1_column,
|
| 291 |
-
search_bar,
|
| 292 |
-
],
|
| 293 |
-
leaderboard_table,
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
with gr.Row():
|
| 302 |
-
with gr.Accordion("📙 Citation", open=True):
|
| 303 |
-
citation_button = gr.Textbox(
|
| 304 |
-
value=CITATION_BUTTON_TEXT,
|
| 305 |
-
label=CITATION_BUTTON_LABEL,
|
| 306 |
-
lines=10,
|
| 307 |
-
elem_id="citation-button",
|
| 308 |
-
show_copy_button=True,
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
scheduler = BackgroundScheduler()
|
| 312 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 313 |
-
scheduler.start()
|
| 314 |
demo.queue().launch(share=True)
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
|
| 7 |
+
from src.about import (
|
| 8 |
+
CITATION_BUTTON_LABEL,
|
| 9 |
+
CITATION_BUTTON_TEXT,
|
| 10 |
+
EVALUATION_QUEUE_TEXT,
|
| 11 |
+
INTRODUCTION_TEXT,
|
| 12 |
+
LLM_BENCHMARKS_TEXT,
|
| 13 |
+
TITLE,
|
| 14 |
+
)
|
| 15 |
+
from src.display.css_html_js import custom_css
|
| 16 |
+
from src.display.utils import (
|
| 17 |
+
BENCHMARK_COLS,
|
| 18 |
+
COLS,
|
| 19 |
+
EVAL_COLS,
|
| 20 |
+
EVAL_TYPES,
|
| 21 |
+
NUMERIC_INTERVALS,
|
| 22 |
+
TYPES,
|
| 23 |
+
AutoEvalColumn,
|
| 24 |
+
ModelType,
|
| 25 |
+
fields,
|
| 26 |
+
WeightType,
|
| 27 |
+
Precision
|
| 28 |
+
)
|
| 29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 30 |
+
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 31 |
+
# from src.submission.submit import add_new_eval
|
| 32 |
+
# from PIL import Image
|
| 33 |
+
# from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
| 34 |
+
# import copy
|
| 35 |
+
|
| 36 |
+
def load_data(data_path):
|
| 37 |
+
columns = ['Unlearned_Methods','Pre-ASR', 'Post-ASR','FID', 'Clip-Score']
|
| 38 |
+
columns_sorted = [Unlearned_Methods','Pre-ASR', 'Post-ASR','FID', 'Clip-Score']
|
| 39 |
+
|
| 40 |
+
df = pd.read_csv(data_path).dropna()
|
| 41 |
+
df['Post-ASR'] = df['Post-ASR'].round(0)
|
| 42 |
+
|
| 43 |
+
# rank according to the Score column
|
| 44 |
+
df = df.sort_values(by='Post-ASR', ascending=False)
|
| 45 |
+
# reorder the columns
|
| 46 |
+
df = df[columns_sorted]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
return df
|
| 50 |
+
|
| 51 |
+
def restart_space():
|
| 52 |
+
API.restart_space(repo_id=REPO_ID)
|
| 53 |
+
|
| 54 |
+
# try:
|
| 55 |
+
# print(EVAL_REQUESTS_PATH)
|
| 56 |
+
# snapshot_download(
|
| 57 |
+
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 58 |
+
# )
|
| 59 |
+
# except Exception:
|
| 60 |
+
# restart_space()
|
| 61 |
+
# try:
|
| 62 |
+
# print(EVAL_RESULTS_PATH)
|
| 63 |
+
# snapshot_download(
|
| 64 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 65 |
+
# )
|
| 66 |
+
# except Exception:
|
| 67 |
+
# restart_space()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 71 |
+
# leaderboard_df = original_df.copy()
|
| 72 |
+
|
| 73 |
+
# (
|
| 74 |
+
# finished_eval_queue_df,
|
| 75 |
+
# running_eval_queue_df,
|
| 76 |
+
# pending_eval_queue_df,
|
| 77 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 78 |
+
|
| 79 |
+
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
| 80 |
+
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
| 81 |
+
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number', 'number']
|
| 82 |
+
files = ['vangogh', 'nudity','church','garbage','parachute','tench', 'vangogh']
|
| 83 |
+
csv_path='./assets/'+files[0]+'.csv'
|
| 84 |
+
df_results = load_data(csv_path)
|
| 85 |
+
methods = list(set(df_results['Unlearned_Methods']))
|
| 86 |
+
df_results_init = df_results.copy()[show_columns]
|
| 87 |
+
|
| 88 |
+
def update_table(
|
| 89 |
+
hidden_df: pd.DataFrame,
|
| 90 |
+
model1_column: list,
|
| 91 |
+
#type_query: list,
|
| 92 |
+
#open_query: list,
|
| 93 |
+
# precision_query: str,
|
| 94 |
+
# size_query: list,
|
| 95 |
+
# show_deleted: bool,
|
| 96 |
+
query: str,
|
| 97 |
+
):
|
| 98 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 99 |
+
# filtered_df = filter_queries(query, filtered_df)
|
| 100 |
+
# df = select_columns(filtered_df, columns)
|
| 101 |
+
filtered_df = hidden_df.copy()
|
| 102 |
+
# print(open_query)
|
| 103 |
+
|
| 104 |
+
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
|
| 105 |
+
# map_open = {'open': 'Yes', 'closed': 'No'}
|
| 106 |
+
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
|
| 107 |
+
filtered_df=select_columns(filtered_df,model1_column)
|
| 108 |
+
filtered_df = filter_queries(query, filtered_df)
|
| 109 |
+
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
|
| 110 |
+
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
|
| 111 |
+
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
| 112 |
+
# deduplication
|
| 113 |
+
# df = df.drop_duplicates(subset=["Model"])
|
| 114 |
+
df = filtered_df.drop_duplicates()
|
| 115 |
+
# df = df[show_columns]
|
| 116 |
+
return df
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 120 |
+
return df[(df['Unlearned_Methods'].str.contains(query, case=False))]
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 124 |
+
final_df = []
|
| 125 |
+
if query != "":
|
| 126 |
+
queries = [q.strip() for q in query.split(";")]
|
| 127 |
+
for _q in queries:
|
| 128 |
+
_q = _q.strip()
|
| 129 |
+
if _q != "":
|
| 130 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
| 131 |
+
if len(temp_filtered_df) > 0:
|
| 132 |
+
final_df.append(temp_filtered_df)
|
| 133 |
+
if len(final_df) > 0:
|
| 134 |
+
filtered_df = pd.concat(final_df)
|
| 135 |
+
|
| 136 |
+
return filtered_df
|
| 137 |
+
|
| 138 |
+
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 139 |
+
return df[(df['Diffusion_Models'].str.contains(query, case=False))]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 143 |
+
final_df = []
|
| 144 |
+
# if query != "":
|
| 145 |
+
# queries = [q.strip() for q in query.split(";")]
|
| 146 |
+
for _q in query:
|
| 147 |
+
print(_q)
|
| 148 |
+
if _q != "":
|
| 149 |
+
temp_filtered_df = search_table_model(filtered_df, _q)
|
| 150 |
+
if len(temp_filtered_df) > 0:
|
| 151 |
+
final_df.append(temp_filtered_df)
|
| 152 |
+
if len(final_df) > 0:
|
| 153 |
+
filtered_df = pd.concat(final_df)
|
| 154 |
+
|
| 155 |
+
return filtered_df
|
| 156 |
+
|
| 157 |
+
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
|
| 158 |
+
always_here_cols = ['Unlearned_Methods']
|
| 159 |
+
|
| 160 |
+
# We use COLS to maintain sorting
|
| 161 |
+
all_columns =['Pre-ASR','Post-ASR','FID','Clip-Score']
|
| 162 |
+
|
| 163 |
+
if (len(columns_1)) == 0:
|
| 164 |
+
filtered_df = df[
|
| 165 |
+
always_here_cols +
|
| 166 |
+
[c for c in all_columns if c in df.columns]
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
else:
|
| 170 |
+
filtered_df = df[
|
| 171 |
+
always_here_cols +
|
| 172 |
+
[c for c in all_columns if c in df.columns and (c in columns_1) ]
|
| 173 |
+
]
|
| 174 |
+
|
| 175 |
+
return filtered_df
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
demo = gr.Blocks(css=custom_css)
|
| 179 |
+
with demo:
|
| 180 |
+
gr.HTML(TITLE)
|
| 181 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 182 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
| 183 |
+
|
| 184 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 185 |
+
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
with gr.Row():
|
| 189 |
+
search_bar = gr.Textbox(
|
| 190 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 191 |
+
show_label=False,
|
| 192 |
+
elem_id="search-bar",
|
| 193 |
+
)
|
| 194 |
+
with gr.Row():
|
| 195 |
+
model1_column = gr.CheckboxGroup(
|
| 196 |
+
label="Evaluation Metrics",
|
| 197 |
+
choices=['Pre-ASR', 'Post-ASR','FID','Clip-score'],
|
| 198 |
+
interactive=True,
|
| 199 |
+
elem_id="column-select",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# with gr.Column(min_width=320):
|
| 203 |
+
# with gr.Row():
|
| 204 |
+
# shown_columns_1 = gr.CheckboxGroup(
|
| 205 |
+
# choices=["Church","Parachute","Tench", "Garbage Truck"],
|
| 206 |
+
# label="Undersirable Objects",
|
| 207 |
+
# elem_id="column-object",
|
| 208 |
+
# interactive=True,
|
| 209 |
+
# )
|
| 210 |
+
# with gr.Row():
|
| 211 |
+
# shown_columns_2 = gr.CheckboxGroup(
|
| 212 |
+
# choices=["Van Gogh"],
|
| 213 |
+
# label="Undersirable Styles",
|
| 214 |
+
# elem_id="column-style",
|
| 215 |
+
# interactive=True,
|
| 216 |
+
# )
|
| 217 |
+
# with gr.Row():
|
| 218 |
+
# shown_columns_3 = gr.CheckboxGroup(
|
| 219 |
+
# choices=["Violence","Illegal Activity","Nudity"],
|
| 220 |
+
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
|
| 221 |
+
# elem_id="column-select",
|
| 222 |
+
# interactive=True,
|
| 223 |
+
# )
|
| 224 |
+
# with gr.Row():
|
| 225 |
+
# shown_columns_4 = gr.Slider(
|
| 226 |
+
# 1, 100, value=40,
|
| 227 |
+
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
|
| 228 |
+
# interactive=True,)
|
| 229 |
+
for i in range(len(files)):
|
| 230 |
+
if files[i] == "church":
|
| 231 |
+
name = "### [Unlearned Objects] "+" Church"
|
| 232 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 233 |
+
elif files[i] == 'garbage':
|
| 234 |
+
name = "### [Unlearned Objects] "+" Garbage"
|
| 235 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 236 |
+
elif files[i] == 'tench':
|
| 237 |
+
name = "### [Unlearned Objects] "+" Tench"
|
| 238 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 239 |
+
elif files[i] == 'parachute':
|
| 240 |
+
name = "### [Unlearned Objects] "+" Parachute"
|
| 241 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 242 |
+
elif files[i] == 'vangogh':
|
| 243 |
+
name = "### [Unlearned Style] "+" Van Gogh"
|
| 244 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 245 |
+
elif files[i] == 'nudity':
|
| 246 |
+
name = "### Unlearned Concepts "+" Nudity"
|
| 247 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 248 |
+
# elif files[i] == 'violence':
|
| 249 |
+
# name = "### Unlearned Concepts "+" Violence"
|
| 250 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
| 251 |
+
# elif files[i] == 'illegal_activity':
|
| 252 |
+
# name = "### Unlearned Concepts "+" Illgal Activity"
|
| 253 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
gr.Markdown(name)
|
| 257 |
+
df_results = load_data(csv_path)
|
| 258 |
+
df_results_init = df_results.copy()[show_columns]
|
| 259 |
+
leaderboard_table = gr.components.Dataframe(
|
| 260 |
+
value = df_results,
|
| 261 |
+
datatype = TYPES,
|
| 262 |
+
elem_id = "leaderboard-table",
|
| 263 |
+
interactive = False,
|
| 264 |
+
visible=True,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 269 |
+
value=df_results_init,
|
| 270 |
+
interactive=False,
|
| 271 |
+
visible=False,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
search_bar.submit(
|
| 275 |
+
update_table,
|
| 276 |
+
[
|
| 277 |
+
|
| 278 |
+
hidden_leaderboard_table_for_search,
|
| 279 |
+
model1_column,
|
| 280 |
+
search_bar,
|
| 281 |
+
],
|
| 282 |
+
leaderboard_table,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
for selector in [model1_column]:
|
| 286 |
+
selector.change(
|
| 287 |
+
update_table,
|
| 288 |
+
[
|
| 289 |
+
hidden_leaderboard_table_for_search,
|
| 290 |
+
model1_column,
|
| 291 |
+
search_bar,
|
| 292 |
+
],
|
| 293 |
+
leaderboard_table,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
with gr.Row():
|
| 302 |
+
with gr.Accordion("📙 Citation", open=True):
|
| 303 |
+
citation_button = gr.Textbox(
|
| 304 |
+
value=CITATION_BUTTON_TEXT,
|
| 305 |
+
label=CITATION_BUTTON_LABEL,
|
| 306 |
+
lines=10,
|
| 307 |
+
elem_id="citation-button",
|
| 308 |
+
show_copy_button=True,
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
scheduler = BackgroundScheduler()
|
| 312 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 313 |
+
scheduler.start()
|
| 314 |
demo.queue().launch(share=True)
|