|  | import os | 
					
						
						|  |  | 
					
						
						|  | os.system("pip install gradio==4.43.0 pydantic==2.7.1 gradio_modal==0.0.3 huggingface-hub==0.23.2") | 
					
						
						|  | os.system("pip install -U transformers") | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import re | 
					
						
						|  | from apscheduler.schedulers.background import BackgroundScheduler | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  | from gradio_space_ci import enable_space_ci | 
					
						
						|  |  | 
					
						
						|  | from src.display.about import ( | 
					
						
						|  | CITATION_BUTTON_LABEL, | 
					
						
						|  | CITATION_BUTTON_TEXT, | 
					
						
						|  | EVALUATION_QUEUE_TEXT, | 
					
						
						|  | INTRODUCTION_TEXT, | 
					
						
						|  | LLM_BENCHMARKS_TEXT, | 
					
						
						|  | FAQ_TEXT, | 
					
						
						|  | TITLE, | 
					
						
						|  | ) | 
					
						
						|  | from src.display.css_html_js import custom_css | 
					
						
						|  | from src.display.utils import ( | 
					
						
						|  | BENCHMARK_COLS, | 
					
						
						|  | COLS, | 
					
						
						|  | EVAL_COLS, | 
					
						
						|  | EVAL_TYPES, | 
					
						
						|  | NUMERIC_INTERVALS, | 
					
						
						|  | NUMERIC_MODELSIZE, | 
					
						
						|  | TYPES, | 
					
						
						|  | AutoEvalColumn, | 
					
						
						|  | GroupDtype, | 
					
						
						|  | ModelType, | 
					
						
						|  | fields, | 
					
						
						|  | WeightType, | 
					
						
						|  | Precision, | 
					
						
						|  | ComputeDtype, | 
					
						
						|  | WeightDtype, | 
					
						
						|  | QuantType | 
					
						
						|  | ) | 
					
						
						|  | from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, REPO, GIT_REQUESTS_PATH, GIT_STATUS_PATH, GIT_RESULTS_PATH | 
					
						
						|  | from src.populate import get_evaluation_queue_df, get_leaderboard_df | 
					
						
						|  | from src.submission.submit import add_new_eval | 
					
						
						|  | from src.scripts.update_all_request_files import update_dynamic_files | 
					
						
						|  | from src.tools.collections import update_collections | 
					
						
						|  | from src.tools.plots import ( | 
					
						
						|  | create_metric_plot_obj, | 
					
						
						|  | create_plot_df, | 
					
						
						|  | create_scores_df, | 
					
						
						|  | ) | 
					
						
						|  | from gradio_modal import Modal | 
					
						
						|  | import plotly.graph_objects as go | 
					
						
						|  |  | 
					
						
						|  | selected_indices = [] | 
					
						
						|  | selected_values = {} | 
					
						
						|  | selected_dropdown_weight = 'All' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | precision_to_dtype = { | 
					
						
						|  | "2bit": ["int2"], | 
					
						
						|  | "3bit": ["int3"], | 
					
						
						|  | "4bit": ["int4", "nf4", "fp4"], | 
					
						
						|  | "8bit": ["int8"], | 
					
						
						|  | "16bit": ['float16', 'bfloat16'], | 
					
						
						|  | "32bit": ["float32"], | 
					
						
						|  | "?": ["?"], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | dtype_to_precision = { | 
					
						
						|  | "int2": ["2bit"], | 
					
						
						|  | "int3": ["3bit"], | 
					
						
						|  | "int4": ["4bit"], | 
					
						
						|  | "nf4": ["4bit"], | 
					
						
						|  | "fp4": ["4bit"], | 
					
						
						|  | "int8": ["8bit"], | 
					
						
						|  | "float16": ["16bit"], | 
					
						
						|  | "bfloat16": ["16bit"], | 
					
						
						|  | "float32": ["32bit"], | 
					
						
						|  | "?": ["?"], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | current_weightDtype = ["int2", "int3", "int4", "nf4", "fp4", "?"] | 
					
						
						|  | current_computeDtype = ['int8', 'bfloat16', 'float16', 'float32'] | 
					
						
						|  | current_quant = [t.to_str() for t in QuantType if t != QuantType.QuantType_None] | 
					
						
						|  | current_precision = ['2bit', '3bit', '4bit', '8bit', '?'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def display_sort(key): | 
					
						
						|  | order = {"All": 0, "?": 1, "int2": 2, "int3": 3, "int4": 4, "fp4": 5, "nf4": 6, "float16": 7, "bfloat16": 8, "float32": 9} | 
					
						
						|  | return order.get(key, float('inf')) | 
					
						
						|  |  | 
					
						
						|  | def comp_display_sort(key): | 
					
						
						|  | order = {"All": 0, "?": 1, "int8": 2, "float16": 3, "bfloat16": 4, "float32": 5} | 
					
						
						|  | return order.get(key, float('inf')) | 
					
						
						|  |  | 
					
						
						|  | def update_quantization_types(selected_quant): | 
					
						
						|  | global current_weightDtype | 
					
						
						|  | global current_computeDtype | 
					
						
						|  | global current_quant | 
					
						
						|  | global current_precision | 
					
						
						|  |  | 
					
						
						|  | if set(current_quant) == set(selected_quant): | 
					
						
						|  | return [ | 
					
						
						|  | gr.Dropdown(choices=current_weightDtype, value=selected_dropdown_weight), | 
					
						
						|  | gr.Dropdown(choices=current_computeDtype, value="All"), | 
					
						
						|  | gr.CheckboxGroup(value=current_precision), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | print('update_quantization_types', selected_quant, current_quant) | 
					
						
						|  | if any(value != 'β None' for value in selected_quant): | 
					
						
						|  | selected_weight = ['All', '?', 'int2', 'int3', 'int4', 'nf4', 'fp4', 'int8'] | 
					
						
						|  | selected_compute = ['All', '?', 'int8', 'float16', 'bfloat16', 'float32'] | 
					
						
						|  | selected_precision = ["2bit", "3bit", "4bit", "8bit", "?"] | 
					
						
						|  |  | 
					
						
						|  | current_weightDtype = selected_weight | 
					
						
						|  | current_computeDtype = selected_compute | 
					
						
						|  | current_quant = selected_quant | 
					
						
						|  | current_precision = selected_precision | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | gr.Dropdown(choices=selected_weight, value="All"), | 
					
						
						|  | gr.Dropdown(choices=selected_compute, value="All"), | 
					
						
						|  | gr.CheckboxGroup(value=selected_precision), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def update_Weight_Precision(temp_precisions): | 
					
						
						|  | global current_weightDtype | 
					
						
						|  | global current_computeDtype | 
					
						
						|  | global current_quant | 
					
						
						|  | global current_precision | 
					
						
						|  | global selected_dropdown_weight | 
					
						
						|  |  | 
					
						
						|  | print('temp_precisions', temp_precisions) | 
					
						
						|  | if set(current_precision) == set(temp_precisions): | 
					
						
						|  | return [ | 
					
						
						|  | gr.Dropdown(choices=current_weightDtype, value=selected_dropdown_weight), | 
					
						
						|  | gr.Dropdown(choices=current_computeDtype, value="All"), | 
					
						
						|  | gr.CheckboxGroup(value=current_precision), | 
					
						
						|  | gr.CheckboxGroup(value=current_quant), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | selected_weight = [] | 
					
						
						|  | selected_compute = ['All', '?', 'int8', 'float16', 'bfloat16', 'float32'] | 
					
						
						|  | selected_quant = [t.to_str() for t in QuantType if t != QuantType.QuantType_None] | 
					
						
						|  |  | 
					
						
						|  | if temp_precisions[-1] in ["16bit", "32bit"]: | 
					
						
						|  | selected_precisions = [p for p in temp_precisions if p in ["16bit", "32bit"]] | 
					
						
						|  | else: | 
					
						
						|  | selected_precisions = [p for p in temp_precisions if p not in ["16bit", "32bit"]] | 
					
						
						|  |  | 
					
						
						|  | current_precision = list(set(selected_precisions)) | 
					
						
						|  | print('selected_dropdown_weight', selected_dropdown_weight) | 
					
						
						|  |  | 
					
						
						|  | if len(current_precision) > 1: | 
					
						
						|  | selected_dropdown_weight = 'All' | 
					
						
						|  | elif selected_dropdown_weight != 'All' and set(dtype_to_precision[selected_dropdown_weight]) != set(current_precision): | 
					
						
						|  | selected_dropdown_weight = 'All' | 
					
						
						|  |  | 
					
						
						|  | print('final', current_precision) | 
					
						
						|  |  | 
					
						
						|  | for precision in current_precision: | 
					
						
						|  | if precision in precision_to_dtype: | 
					
						
						|  | selected_weight.extend(precision_to_dtype[precision]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "16bit" in current_precision: | 
					
						
						|  | selected_weight = [option for option in selected_weight if option in ["All", "?", "float16", "bfloat16"]] | 
					
						
						|  | if "int8" in selected_compute: | 
					
						
						|  | selected_compute.remove("int8") | 
					
						
						|  |  | 
					
						
						|  | if "32bit" in current_precision: | 
					
						
						|  | selected_weight = [option for option in selected_weight if option in ["All", "?", "float32"]] | 
					
						
						|  | if "int8" in selected_compute: | 
					
						
						|  | selected_compute.remove("int8") | 
					
						
						|  |  | 
					
						
						|  | if "16bit" in current_precision or "32bit" in current_precision: | 
					
						
						|  | selected_quant = ['β None'] | 
					
						
						|  | if "16bit" in current_precision and "32bit" in current_precision: | 
					
						
						|  | selected_weight = ["All", "?", "float16", "bfloat16", "float32"] | 
					
						
						|  |  | 
					
						
						|  | selected_weight = ["All", "?"] + [opt for opt in selected_weight if opt not in ["All", "?"]] | 
					
						
						|  | selected_compute = ["All", "?"] + [opt for opt in selected_compute if opt not in ["All", "?"]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | selected_weight = list(set(selected_weight)) | 
					
						
						|  | selected_compute = list(set(selected_compute)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | current_weightDtype = selected_weight | 
					
						
						|  | current_computeDtype = selected_compute | 
					
						
						|  | current_quant = selected_quant | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | gr.Dropdown(choices=selected_weight, value=selected_dropdown_weight), | 
					
						
						|  | gr.Dropdown(choices=selected_compute, value="All"), | 
					
						
						|  | gr.CheckboxGroup(value=selected_precisions), | 
					
						
						|  | gr.CheckboxGroup(value=selected_quant), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def update_Weight_Dtype(weight): | 
					
						
						|  | global selected_dropdown_weight | 
					
						
						|  | print('update_Weight_Dtype', weight) | 
					
						
						|  |  | 
					
						
						|  | if weight == selected_dropdown_weight or weight == 'All': | 
					
						
						|  | return current_precision | 
					
						
						|  | else: | 
					
						
						|  | selected_precisions = [] | 
					
						
						|  | selected_precisions.extend(dtype_to_precision[weight]) | 
					
						
						|  | selected_dropdown_weight =  weight | 
					
						
						|  | print('selected_precisions', selected_precisions) | 
					
						
						|  |  | 
					
						
						|  | return selected_precisions | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def restart_space(): | 
					
						
						|  | API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_space(full_init: bool = True): | 
					
						
						|  |  | 
					
						
						|  | if full_init: | 
					
						
						|  | try: | 
					
						
						|  | branch = REPO.active_branch.name | 
					
						
						|  | REPO.remotes.origin.pull(branch) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(str(e)) | 
					
						
						|  | restart_space() | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | print(DYNAMIC_INFO_PATH) | 
					
						
						|  | snapshot_download( | 
					
						
						|  | repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  | restart_space() | 
					
						
						|  |  | 
					
						
						|  | raw_data, original_df = get_leaderboard_df( | 
					
						
						|  | results_path=GIT_RESULTS_PATH, | 
					
						
						|  | requests_path=GIT_STATUS_PATH, | 
					
						
						|  | dynamic_path=DYNAMIC_INFO_FILE_PATH, | 
					
						
						|  | cols=COLS, | 
					
						
						|  | benchmark_cols=BENCHMARK_COLS | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | leaderboard_df = original_df.copy() | 
					
						
						|  |  | 
					
						
						|  | plot_df = create_plot_df(create_scores_df(raw_data)) | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | finished_eval_queue_df, | 
					
						
						|  | running_eval_queue_df, | 
					
						
						|  | pending_eval_queue_df, | 
					
						
						|  | ) = get_evaluation_queue_df(GIT_STATUS_PATH, EVAL_COLS) | 
					
						
						|  |  | 
					
						
						|  | return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | 
					
						
						|  |  | 
					
						
						|  | leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | 
					
						
						|  |  | 
					
						
						|  | def str_to_bool(value): | 
					
						
						|  | if str(value).lower() == "true": | 
					
						
						|  | return True | 
					
						
						|  | elif str(value).lower() == "false": | 
					
						
						|  | return False | 
					
						
						|  | else: | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def update_table( | 
					
						
						|  | hidden_df: pd.DataFrame, | 
					
						
						|  | columns: list, | 
					
						
						|  | type_query: list, | 
					
						
						|  | precision_query: str, | 
					
						
						|  | size_query: list, | 
					
						
						|  | params_query: list, | 
					
						
						|  | hide_models: list, | 
					
						
						|  | query: str, | 
					
						
						|  | compute_dtype: str, | 
					
						
						|  | weight_dtype: str, | 
					
						
						|  | double_quant: str, | 
					
						
						|  | group_dtype: str | 
					
						
						|  | ): | 
					
						
						|  | global init_select | 
					
						
						|  | global current_weightDtype | 
					
						
						|  | global current_computeDtype | 
					
						
						|  |  | 
					
						
						|  | if weight_dtype == ['All'] or weight_dtype == 'All': | 
					
						
						|  | weight_dtype = current_weightDtype | 
					
						
						|  | else: | 
					
						
						|  | weight_dtype = [weight_dtype] | 
					
						
						|  |  | 
					
						
						|  | if compute_dtype == 'All': | 
					
						
						|  | compute_dtype = current_computeDtype | 
					
						
						|  | else: | 
					
						
						|  | compute_dtype = [compute_dtype] | 
					
						
						|  |  | 
					
						
						|  | if group_dtype == 'All': | 
					
						
						|  | group_dtype = [-1, 1024, 256, 128, 64, 32] | 
					
						
						|  | else: | 
					
						
						|  | try: | 
					
						
						|  | group_dtype = [int(group_dtype)] | 
					
						
						|  | except ValueError: | 
					
						
						|  | group_dtype = [-1] | 
					
						
						|  |  | 
					
						
						|  | if double_quant == 'All': | 
					
						
						|  | double_quant = [True, False] | 
					
						
						|  | else: | 
					
						
						|  | double_quant = [str_to_bool(double_quant)] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant, group_dtype=group_dtype, params_query=params_query) | 
					
						
						|  | filtered_df = filter_queries(query, filtered_df) | 
					
						
						|  | df = select_columns(filtered_df, columns) | 
					
						
						|  | return df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_query(request: gr.Request): | 
					
						
						|  | query = request.query_params.get("query") or "" | 
					
						
						|  | return query, query | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | 
					
						
						|  | return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | 
					
						
						|  | always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | 
					
						
						|  | dummy_col = [AutoEvalColumn.dummy.name] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = df[ | 
					
						
						|  | always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col | 
					
						
						|  | ] | 
					
						
						|  | return filtered_df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def filter_queries(query: str, filtered_df: pd.DataFrame): | 
					
						
						|  | """Added by Abishek""" | 
					
						
						|  | final_df = [] | 
					
						
						|  | if query != "": | 
					
						
						|  | queries = [q.strip() for q in query.split(";")] | 
					
						
						|  | for _q in queries: | 
					
						
						|  | _q = _q.strip() | 
					
						
						|  | if _q != "": | 
					
						
						|  | temp_filtered_df = search_table(filtered_df, _q) | 
					
						
						|  | if len(temp_filtered_df) > 0: | 
					
						
						|  | final_df.append(temp_filtered_df) | 
					
						
						|  | if len(final_df) > 0: | 
					
						
						|  | filtered_df = pd.concat(final_df) | 
					
						
						|  | filtered_df = filtered_df.drop_duplicates( | 
					
						
						|  | subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return filtered_df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def filter_models( | 
					
						
						|  | df: pd.DataFrame, type_query: list, size_query: list, params_query:list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list, group_dtype: list, | 
					
						
						|  | ) -> pd.DataFrame: | 
					
						
						|  |  | 
					
						
						|  | if "Private or deleted" in hide_models: | 
					
						
						|  | filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | 
					
						
						|  | else: | 
					
						
						|  | filtered_df = df | 
					
						
						|  |  | 
					
						
						|  | if "Contains a merge/moerge" in hide_models: | 
					
						
						|  | filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] | 
					
						
						|  |  | 
					
						
						|  | if "MoE" in hide_models: | 
					
						
						|  | filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] | 
					
						
						|  |  | 
					
						
						|  | if "Flagged" in hide_models: | 
					
						
						|  | filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] | 
					
						
						|  |  | 
					
						
						|  | type_emoji = [t[0] for t in type_query] | 
					
						
						|  | if any(emoji != 'β' for emoji in type_emoji): | 
					
						
						|  | type_emoji = [emoji for emoji in type_emoji if emoji != 'β'] | 
					
						
						|  | else: | 
					
						
						|  | type_emoji = ['β'] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)] | 
					
						
						|  |  | 
					
						
						|  | filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)] | 
					
						
						|  |  | 
					
						
						|  | numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | 
					
						
						|  | params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | 
					
						
						|  | mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | 
					
						
						|  | filtered_df = filtered_df.loc[mask] | 
					
						
						|  |  | 
					
						
						|  | numeric_interval_params = pd.IntervalIndex(sorted([NUMERIC_MODELSIZE[s] for s in params_query])) | 
					
						
						|  | params_column_params = pd.to_numeric(df[AutoEvalColumn.model_size.name], errors="coerce") | 
					
						
						|  | mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x))) | 
					
						
						|  | filtered_df = filtered_df.loc[mask_params] | 
					
						
						|  |  | 
					
						
						|  | return filtered_df | 
					
						
						|  |  | 
					
						
						|  | def select(df, data: gr.SelectData): | 
					
						
						|  | global selected_indices | 
					
						
						|  | global selected_values | 
					
						
						|  |  | 
					
						
						|  | selected_index = data.index[0] | 
					
						
						|  | if selected_index in selected_indices: | 
					
						
						|  | selected_indices.remove(selected_index) | 
					
						
						|  |  | 
					
						
						|  | value = df.iloc[selected_index].iloc[1] | 
					
						
						|  | pattern = r'<a[^>]+>([^<]+)</a>' | 
					
						
						|  | match = re.search(pattern, value) | 
					
						
						|  | if match: | 
					
						
						|  | text_content = match.group(1) | 
					
						
						|  | if text_content in selected_values: | 
					
						
						|  | del selected_values[text_content] | 
					
						
						|  | else: | 
					
						
						|  | selected_indices.append(selected_index) | 
					
						
						|  |  | 
					
						
						|  | value = df.iloc[selected_index].iloc[1] | 
					
						
						|  | pattern = r'<a[^>]+>([^<]+)</a>' | 
					
						
						|  | match = re.search(pattern, value) | 
					
						
						|  | if match: | 
					
						
						|  | text_content = match.group(1) | 
					
						
						|  | selected_values[text_content] = value | 
					
						
						|  |  | 
					
						
						|  | return gr.CheckboxGroup(list(selected_values.keys()), value=list(selected_values.keys())) | 
					
						
						|  |  | 
					
						
						|  | def init_comparison_data(): | 
					
						
						|  | global selected_values | 
					
						
						|  | return gr.CheckboxGroup(list(selected_values.keys()), value=list(selected_values.keys())) | 
					
						
						|  |  | 
					
						
						|  | def remove_html_tags(value): | 
					
						
						|  | if isinstance(value, str): | 
					
						
						|  | return re.sub(r'<[^>]*>', '', value) | 
					
						
						|  | return value | 
					
						
						|  |  | 
					
						
						|  | def generate_spider_chart(df, selected_keys): | 
					
						
						|  | global selected_values | 
					
						
						|  | current_selected_values = [selected_values[key] for key in selected_keys if key in selected_values] | 
					
						
						|  | selected_rows = df[df.iloc[:, 1].isin(current_selected_values)] | 
					
						
						|  | cleaned_rows = selected_rows.applymap(remove_html_tags) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fig = go.Figure() | 
					
						
						|  | for _, row in selected_rows.iterrows(): | 
					
						
						|  | fig.add_trace(go.Scatterpolar( | 
					
						
						|  | r=[row['Average β¬οΈ'], row['ARC-c'], row['ARC-e'], row['Boolq'], row['HellaSwag'], row['Lambada'], row['MMLU'], row['Openbookqa'], row['Piqa'], row['Truthfulqa'], row['Winogrande']], | 
					
						
						|  | theta=['Average β¬οΈ', 'ARC-c', 'ARC-e', 'Boolq', 'HellaSwag', 'Lambada', 'MMLU', 'Openbookqa', 'Piqa', 'Truthfulqa', 'Winogrande'], | 
					
						
						|  | fill='toself', | 
					
						
						|  | name=str(row['Model']) | 
					
						
						|  | )) | 
					
						
						|  | fig.update_layout( | 
					
						
						|  | polar=dict( | 
					
						
						|  | radialaxis=dict( | 
					
						
						|  | visible=False, | 
					
						
						|  | )), | 
					
						
						|  | showlegend=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return fig, cleaned_rows | 
					
						
						|  |  | 
					
						
						|  | leaderboard_df = filter_models( | 
					
						
						|  | df=leaderboard_df, | 
					
						
						|  | type_query=[t.to_str(" : ") for t in QuantType if t != QuantType.QuantType_None], | 
					
						
						|  | size_query=list(NUMERIC_INTERVALS.keys()), | 
					
						
						|  | params_query=list(NUMERIC_MODELSIZE.keys()), | 
					
						
						|  | precision_query=[i.value.name for i in Precision], | 
					
						
						|  | hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], | 
					
						
						|  | compute_dtype=[i.value.name for i in ComputeDtype], | 
					
						
						|  | weight_dtype=[i.value.name for i in WeightDtype], | 
					
						
						|  | double_quant=[True, False], | 
					
						
						|  | group_dtype=[-1, 1024, 256, 128, 64, 32] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | demo = gr.Blocks(css=custom_css) | 
					
						
						|  | with demo: | 
					
						
						|  | gr.HTML(TITLE) | 
					
						
						|  | gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(elem_classes="tab-buttons") as tabs: | 
					
						
						|  | with gr.TabItem("π
 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | search_bar = gr.Textbox( | 
					
						
						|  | placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | 
					
						
						|  | show_label=False, | 
					
						
						|  | elem_id="search-bar", | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | shown_columns = gr.CheckboxGroup( | 
					
						
						|  | choices=[ | 
					
						
						|  | c.name | 
					
						
						|  | for c in fields(AutoEvalColumn) | 
					
						
						|  | if not c.hidden and not c.never_hidden and not c.dummy | 
					
						
						|  | ], | 
					
						
						|  | value=[ | 
					
						
						|  | c.name | 
					
						
						|  | for c in fields(AutoEvalColumn) | 
					
						
						|  | if c.displayed_by_default and not c.hidden and not c.never_hidden | 
					
						
						|  | ], | 
					
						
						|  | label="Select columns to show", | 
					
						
						|  | elem_id="column-select", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | filter_columns_parameters = gr.CheckboxGroup( | 
					
						
						|  | label="Model parameters (in billions of parameters)", | 
					
						
						|  | choices=list(NUMERIC_INTERVALS.keys()), | 
					
						
						|  | value=list(NUMERIC_INTERVALS.keys()), | 
					
						
						|  | interactive=True, | 
					
						
						|  | elem_id="filter-columns-size", | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | filter_columns_size = gr.CheckboxGroup( | 
					
						
						|  | label="Model sizes (GB, int4)", | 
					
						
						|  | choices=list(NUMERIC_MODELSIZE.keys()), | 
					
						
						|  | value=list(NUMERIC_MODELSIZE.keys()), | 
					
						
						|  | interactive=True, | 
					
						
						|  | elem_id="filter-columns-size", | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(min_width=320): | 
					
						
						|  |  | 
					
						
						|  | filter_columns_type = gr.CheckboxGroup( | 
					
						
						|  | label="Quantization types", | 
					
						
						|  | choices=[t.to_str() for t in QuantType if t != QuantType.QuantType_None], | 
					
						
						|  | value=[t.to_str() for t in QuantType if t != QuantType.QuantType_None], | 
					
						
						|  | interactive=True, | 
					
						
						|  | elem_id="filter-columns-type", | 
					
						
						|  | ) | 
					
						
						|  | filter_columns_precision = gr.CheckboxGroup( | 
					
						
						|  | label="Weight precision", | 
					
						
						|  | choices=[i.value.name for i in Precision], | 
					
						
						|  | value=[i.value.name for i in Precision  if ( i.value.name != '16bit' and i.value.name != '32bit')], | 
					
						
						|  | interactive=True, | 
					
						
						|  | elem_id="filter-columns-precision", | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group() as config: | 
					
						
						|  |  | 
					
						
						|  | gr.HTML("""<p style='padding: 0.7rem; background: #fff; margin: 0; color: #6b7280;'>Quantization config</p>""") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="All", interactive=True,) | 
					
						
						|  | filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="All", interactive=True,) | 
					
						
						|  | filter_columns_doubleQuant = gr.Dropdown(choices=["All", "True", "False"], label="Double Quant", multiselect=False, value="All", interactive=True) | 
					
						
						|  | filter_columns_groupDtype = gr.Dropdown(choices=[i.value.name for i in GroupDtype], label="Group Size", multiselect=False, value="All", interactive=True,) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | model_comparison = gr.CheckboxGroup(label="Accuracy Comparison (Selected Models from Table)", choices=list(selected_values.keys()), value=list(selected_values.keys()), interactive=True, elem_id="model_comparison") | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | spider_btn = gr.Button("Compare") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | leaderboard_table = gr.components.Dataframe( | 
					
						
						|  | value=leaderboard_df[ | 
					
						
						|  | [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | 
					
						
						|  | + shown_columns.value | 
					
						
						|  | + [AutoEvalColumn.dummy.name] | 
					
						
						|  | ], | 
					
						
						|  | headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | 
					
						
						|  | datatype=TYPES, | 
					
						
						|  | elem_id="leaderboard-table", | 
					
						
						|  | interactive=False, | 
					
						
						|  | visible=True, | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with Modal(visible=False) as modal: | 
					
						
						|  | map = gr.Plot() | 
					
						
						|  | data_table = gr.Dataframe() | 
					
						
						|  | gr.Column([map, data_table]) | 
					
						
						|  |  | 
					
						
						|  | leaderboard_table.select(select, leaderboard_table, model_comparison) | 
					
						
						|  | spider_btn.click(generate_spider_chart, [leaderboard_table, model_comparison], [map, data_table]) | 
					
						
						|  | spider_btn.click(lambda: Modal(visible=True), None, modal) | 
					
						
						|  | demo.load(init_comparison_data, None, model_comparison) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_leaderboard_table_for_search = gr.components.Dataframe( | 
					
						
						|  | value=original_df[COLS], | 
					
						
						|  | headers=COLS, | 
					
						
						|  | datatype=TYPES, | 
					
						
						|  | visible=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hide_models = gr.Textbox( | 
					
						
						|  | placeholder="", | 
					
						
						|  | show_label=False, | 
					
						
						|  | elem_id="search-bar", | 
					
						
						|  | value="", | 
					
						
						|  | visible=False, | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | search_bar.submit( | 
					
						
						|  | update_table, | 
					
						
						|  | [ | 
					
						
						|  | hidden_leaderboard_table_for_search, | 
					
						
						|  | shown_columns, | 
					
						
						|  | filter_columns_type, | 
					
						
						|  | filter_columns_precision, | 
					
						
						|  | filter_columns_parameters, | 
					
						
						|  | filter_columns_size, | 
					
						
						|  | hide_models, | 
					
						
						|  | search_bar, | 
					
						
						|  | filter_columns_computeDtype, | 
					
						
						|  | filter_columns_weightDtype, | 
					
						
						|  | filter_columns_doubleQuant, | 
					
						
						|  | filter_columns_groupDtype | 
					
						
						|  | ], | 
					
						
						|  | leaderboard_table, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | # Define a hidden component that will trigger a reload only if a query parameter has been set | 
					
						
						|  | hidden_search_bar = gr.Textbox(value="", visible=False) | 
					
						
						|  | hidden_search_bar.change( | 
					
						
						|  | update_table, | 
					
						
						|  | [ | 
					
						
						|  | hidden_leaderboard_table_for_search, | 
					
						
						|  | shown_columns, | 
					
						
						|  | filter_columns_type, | 
					
						
						|  | filter_columns_precision, | 
					
						
						|  | filter_columns_size, | 
					
						
						|  | hide_models, | 
					
						
						|  | search_bar, | 
					
						
						|  | ], | 
					
						
						|  | leaderboard_table, | 
					
						
						|  | ) | 
					
						
						|  | # Check query parameter once at startup and update search bar + hidden component | 
					
						
						|  | demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | filter_columns_type.change( | 
					
						
						|  | update_quantization_types, | 
					
						
						|  | [filter_columns_type], | 
					
						
						|  | [filter_columns_weightDtype, filter_columns_computeDtype, filter_columns_precision] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | filter_columns_precision.change( | 
					
						
						|  | update_Weight_Precision, | 
					
						
						|  | [filter_columns_precision], | 
					
						
						|  | [filter_columns_weightDtype, filter_columns_computeDtype, filter_columns_precision, filter_columns_type] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | filter_columns_weightDtype.change( | 
					
						
						|  | update_Weight_Dtype, | 
					
						
						|  | [filter_columns_weightDtype], | 
					
						
						|  | [filter_columns_precision] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]: | 
					
						
						|  | selector.change( | 
					
						
						|  | update_table, | 
					
						
						|  | [ | 
					
						
						|  | hidden_leaderboard_table_for_search, | 
					
						
						|  | shown_columns, | 
					
						
						|  | filter_columns_type, | 
					
						
						|  | filter_columns_precision, | 
					
						
						|  | filter_columns_parameters, | 
					
						
						|  | filter_columns_size, | 
					
						
						|  | hide_models, | 
					
						
						|  | search_bar, | 
					
						
						|  | filter_columns_computeDtype, | 
					
						
						|  | filter_columns_weightDtype, | 
					
						
						|  | filter_columns_doubleQuant, | 
					
						
						|  | filter_columns_groupDtype | 
					
						
						|  | ], | 
					
						
						|  | leaderboard_table, | 
					
						
						|  | queue=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | chart = create_metric_plot_obj( | 
					
						
						|  | plot_df, | 
					
						
						|  | [AutoEvalColumn.average.name], | 
					
						
						|  | title="Average of Top Scores and Human Baseline Over Time (from last update)", | 
					
						
						|  | ) | 
					
						
						|  | gr.Plot(value=chart, min_width=500) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | chart = create_metric_plot_obj( | 
					
						
						|  | plot_df, | 
					
						
						|  | BENCHMARK_COLS, | 
					
						
						|  | title="Top Scores and Human Baseline Over Time (from last update)", | 
					
						
						|  | ) | 
					
						
						|  | gr.Plot(value=chart, min_width=500) | 
					
						
						|  | with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): | 
					
						
						|  | gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4): | 
					
						
						|  | gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | model_name_textbox = gr.Textbox(label="Model name") | 
					
						
						|  | revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | 
					
						
						|  | private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | """ | 
					
						
						|  | precision = gr.Dropdown( | 
					
						
						|  | choices=[i.value.name for i in Precision if i != Precision.Unknown], | 
					
						
						|  | label="Precision", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value="4bit", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | weight_type = gr.Dropdown( | 
					
						
						|  | choices=[i.value.name for i in WeightDtype], | 
					
						
						|  | label="Weights dtype", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value="int4", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  | base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", | 
					
						
						|  | visible=not IS_PUBLIC) | 
					
						
						|  | compute_type = gr.Dropdown( | 
					
						
						|  | choices=[i.value.name for i in ComputeDtype if i.value.name != "All"], | 
					
						
						|  | label="Compute dtype", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value="float16", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | submit_button = gr.Button("Submit Eval") | 
					
						
						|  | submission_result = gr.Markdown() | 
					
						
						|  | submit_button.click( | 
					
						
						|  | add_new_eval, | 
					
						
						|  | [ | 
					
						
						|  | model_name_textbox, | 
					
						
						|  | revision_name_textbox, | 
					
						
						|  | private, | 
					
						
						|  | compute_type, | 
					
						
						|  | ], | 
					
						
						|  | submission_result, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β
 Finished Evaluations ({len(finished_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | finished_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=finished_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | running_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=running_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | pending_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=pending_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Accordion("π Citation", open=False): | 
					
						
						|  | citation_button = gr.Textbox( | 
					
						
						|  | value=CITATION_BUTTON_TEXT, | 
					
						
						|  | label=CITATION_BUTTON_LABEL, | 
					
						
						|  | lines=20, | 
					
						
						|  | elem_id="citation-button", | 
					
						
						|  | show_copy_button=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | scheduler = BackgroundScheduler() | 
					
						
						|  | scheduler.add_job(restart_space, "interval", hours=3) | 
					
						
						|  | scheduler.add_job(update_dynamic_files, "interval", hours=12) | 
					
						
						|  | scheduler.start() | 
					
						
						|  |  | 
					
						
						|  | demo.queue(default_concurrency_limit=40).launch() | 
					
						
						|  |  | 
					
						
						|  |  |