lvkaokao
commited on
Commit
·
b9cb207
1
Parent(s):
ac138f8
add new search.
Browse files- app.py +42 -12
- src/display/about.py +2 -2
- src/display/utils.py +28 -3
- src/leaderboard/read_evals.py +8 -0
app.py
CHANGED
|
@@ -25,6 +25,7 @@ from src.display.utils import (
|
|
| 25 |
NUMERIC_INTERVALS,
|
| 26 |
TYPES,
|
| 27 |
AutoEvalColumn,
|
|
|
|
| 28 |
ModelType,
|
| 29 |
fields,
|
| 30 |
WeightType,
|
|
@@ -105,17 +106,27 @@ def update_table(
|
|
| 105 |
type_query: list,
|
| 106 |
precision_query: str,
|
| 107 |
size_query: list,
|
|
|
|
| 108 |
hide_models: list,
|
| 109 |
query: str,
|
| 110 |
compute_dtype: str,
|
| 111 |
weight_dtype: str,
|
| 112 |
-
double_quant: str
|
|
|
|
| 113 |
):
|
| 114 |
|
| 115 |
compute_dtype = [compute_dtype]
|
| 116 |
weight_dtype = [weight_dtype]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
double_quant = [str_to_bool(double_quant)]
|
| 118 |
-
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant)
|
| 119 |
filtered_df = filter_queries(query, filtered_df)
|
| 120 |
df = select_columns(filtered_df, columns)
|
| 121 |
return df
|
|
@@ -161,8 +172,8 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 161 |
|
| 162 |
|
| 163 |
def filter_models(
|
| 164 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list
|
| 165 |
-
) -> pd.DataFrame:
|
| 166 |
# Show all models
|
| 167 |
if "Private or deleted" in hide_models:
|
| 168 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
@@ -185,24 +196,31 @@ def filter_models(
|
|
| 185 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)]
|
| 186 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)]
|
| 187 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)]
|
|
|
|
| 188 |
|
| 189 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 190 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 191 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 192 |
filtered_df = filtered_df.loc[mask]
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
return filtered_df
|
| 195 |
|
| 196 |
leaderboard_df = filter_models(
|
| 197 |
df=leaderboard_df,
|
| 198 |
type_query=[t.to_str(" : ") for t in QuantType],
|
| 199 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
|
|
|
| 200 |
precision_query=[i.value.name for i in Precision],
|
| 201 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs,
|
| 202 |
compute_dtype=[i.value.name for i in ComputeDtype],
|
| 203 |
weight_dtype=[i.value.name for i in WeightDtype],
|
| 204 |
-
double_quant=[True, False]
|
| 205 |
-
|
| 206 |
)
|
| 207 |
|
| 208 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -236,9 +254,18 @@ with demo:
|
|
| 236 |
elem_id="column-select",
|
| 237 |
interactive=True,
|
| 238 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
with gr.Row():
|
| 240 |
filter_columns_size = gr.CheckboxGroup(
|
| 241 |
-
label="Model sizes (
|
| 242 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 243 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 244 |
interactive=True,
|
|
@@ -266,8 +293,7 @@ with demo:
|
|
| 266 |
filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="float16", interactive=True,)
|
| 267 |
filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="int4", interactive=True,)
|
| 268 |
filter_columns_doubleQuant = gr.Dropdown(choices=["True", "False"], label="Double Quant", multiselect=False, value=False, interactive=True)
|
| 269 |
-
|
| 270 |
-
# gr.Checkbox(label="", info=""),
|
| 271 |
|
| 272 |
leaderboard_table = gr.components.Dataframe(
|
| 273 |
value=leaderboard_df[
|
|
@@ -308,11 +334,13 @@ with demo:
|
|
| 308 |
filter_columns_type,
|
| 309 |
filter_columns_precision,
|
| 310 |
filter_columns_size,
|
|
|
|
| 311 |
hide_models,
|
| 312 |
search_bar,
|
| 313 |
filter_columns_computeDtype,
|
| 314 |
filter_columns_weightDtype,
|
| 315 |
-
filter_columns_doubleQuant
|
|
|
|
| 316 |
],
|
| 317 |
leaderboard_table,
|
| 318 |
)
|
|
@@ -341,7 +369,7 @@ with demo:
|
|
| 341 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 342 |
|
| 343 |
"""
|
| 344 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant]:
|
| 345 |
selector.change(
|
| 346 |
update_table,
|
| 347 |
[
|
|
@@ -350,11 +378,13 @@ with demo:
|
|
| 350 |
filter_columns_type,
|
| 351 |
filter_columns_precision,
|
| 352 |
filter_columns_size,
|
|
|
|
| 353 |
hide_models,
|
| 354 |
search_bar,
|
| 355 |
filter_columns_computeDtype,
|
| 356 |
filter_columns_weightDtype,
|
| 357 |
-
filter_columns_doubleQuant
|
|
|
|
| 358 |
],
|
| 359 |
leaderboard_table,
|
| 360 |
queue=True,
|
|
|
|
| 25 |
NUMERIC_INTERVALS,
|
| 26 |
TYPES,
|
| 27 |
AutoEvalColumn,
|
| 28 |
+
GroupDtype,
|
| 29 |
ModelType,
|
| 30 |
fields,
|
| 31 |
WeightType,
|
|
|
|
| 106 |
type_query: list,
|
| 107 |
precision_query: str,
|
| 108 |
size_query: list,
|
| 109 |
+
params_query: list,
|
| 110 |
hide_models: list,
|
| 111 |
query: str,
|
| 112 |
compute_dtype: str,
|
| 113 |
weight_dtype: str,
|
| 114 |
+
double_quant: str,
|
| 115 |
+
group_dtype: str
|
| 116 |
):
|
| 117 |
|
| 118 |
compute_dtype = [compute_dtype]
|
| 119 |
weight_dtype = [weight_dtype]
|
| 120 |
+
if group_dtype == 'All':
|
| 121 |
+
group_dtype = [-1, 1024, 256, 128, 32]
|
| 122 |
+
else:
|
| 123 |
+
try:
|
| 124 |
+
group_dtype = [int(group_dtype)]
|
| 125 |
+
except ValueError:
|
| 126 |
+
group_dtype = [-1]
|
| 127 |
+
|
| 128 |
double_quant = [str_to_bool(double_quant)]
|
| 129 |
+
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant, group_dtype=group_dtype, params_query=params_query)
|
| 130 |
filtered_df = filter_queries(query, filtered_df)
|
| 131 |
df = select_columns(filtered_df, columns)
|
| 132 |
return df
|
|
|
|
| 172 |
|
| 173 |
|
| 174 |
def filter_models(
|
| 175 |
+
df: pd.DataFrame, type_query: list, size_query: list, params_query:list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list, group_dtype: list,
|
| 176 |
+
) -> pd.DataFrame:
|
| 177 |
# Show all models
|
| 178 |
if "Private or deleted" in hide_models:
|
| 179 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
|
| 196 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)]
|
| 197 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)]
|
| 198 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)]
|
| 199 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)]
|
| 200 |
|
| 201 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 202 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 203 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 204 |
filtered_df = filtered_df.loc[mask]
|
| 205 |
|
| 206 |
+
numeric_interval_params = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in params_query]))
|
| 207 |
+
params_column_params = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 208 |
+
mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x)))
|
| 209 |
+
filtered_df = filtered_df.loc[mask_params]
|
| 210 |
+
|
| 211 |
return filtered_df
|
| 212 |
|
| 213 |
leaderboard_df = filter_models(
|
| 214 |
df=leaderboard_df,
|
| 215 |
type_query=[t.to_str(" : ") for t in QuantType],
|
| 216 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 217 |
+
params_query=list(NUMERIC_INTERVALS.keys()),
|
| 218 |
precision_query=[i.value.name for i in Precision],
|
| 219 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs,
|
| 220 |
compute_dtype=[i.value.name for i in ComputeDtype],
|
| 221 |
weight_dtype=[i.value.name for i in WeightDtype],
|
| 222 |
+
double_quant=[True, False],
|
| 223 |
+
group_dtype=[-1, 1024, 256, 128, 32]
|
| 224 |
)
|
| 225 |
|
| 226 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 254 |
elem_id="column-select",
|
| 255 |
interactive=True,
|
| 256 |
)
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
filter_columns_parameters = gr.CheckboxGroup(
|
| 260 |
+
label="Model parameters (in billions of parameters)",
|
| 261 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 262 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 263 |
+
interactive=True,
|
| 264 |
+
elem_id="filter-columns-size",
|
| 265 |
+
)
|
| 266 |
with gr.Row():
|
| 267 |
filter_columns_size = gr.CheckboxGroup(
|
| 268 |
+
label="Model sizes (GB, int4)",
|
| 269 |
choices=list(NUMERIC_INTERVALS.keys()),
|
| 270 |
value=list(NUMERIC_INTERVALS.keys()),
|
| 271 |
interactive=True,
|
|
|
|
| 293 |
filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="float16", interactive=True,)
|
| 294 |
filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="int4", interactive=True,)
|
| 295 |
filter_columns_doubleQuant = gr.Dropdown(choices=["True", "False"], label="Double Quant", multiselect=False, value=False, interactive=True)
|
| 296 |
+
filter_columns_groupDtype = gr.Dropdown(choices=[i.value.name for i in GroupDtype], label="Group Size", multiselect=False, value="All", interactive=True,)
|
|
|
|
| 297 |
|
| 298 |
leaderboard_table = gr.components.Dataframe(
|
| 299 |
value=leaderboard_df[
|
|
|
|
| 334 |
filter_columns_type,
|
| 335 |
filter_columns_precision,
|
| 336 |
filter_columns_size,
|
| 337 |
+
filter_columns_parameters,
|
| 338 |
hide_models,
|
| 339 |
search_bar,
|
| 340 |
filter_columns_computeDtype,
|
| 341 |
filter_columns_weightDtype,
|
| 342 |
+
filter_columns_doubleQuant,
|
| 343 |
+
filter_columns_groupDtype
|
| 344 |
],
|
| 345 |
leaderboard_table,
|
| 346 |
)
|
|
|
|
| 369 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 370 |
|
| 371 |
"""
|
| 372 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]:
|
| 373 |
selector.change(
|
| 374 |
update_table,
|
| 375 |
[
|
|
|
|
| 378 |
filter_columns_type,
|
| 379 |
filter_columns_precision,
|
| 380 |
filter_columns_size,
|
| 381 |
+
filter_columns_parameters,
|
| 382 |
hide_models,
|
| 383 |
search_bar,
|
| 384 |
filter_columns_computeDtype,
|
| 385 |
filter_columns_weightDtype,
|
| 386 |
+
filter_columns_doubleQuant,
|
| 387 |
+
filter_columns_groupDtype
|
| 388 |
],
|
| 389 |
leaderboard_table,
|
| 390 |
queue=True,
|
src/display/about.py
CHANGED
|
@@ -59,10 +59,10 @@ python main.py --model=hf-causal-experimental
|
|
| 59 |
- ARC-C: 0-shot, *arc_challenge* (`acc`)
|
| 60 |
- ARC-E: 0-shot, *arc_easy* (`acc`)
|
| 61 |
- HellaSwag: 0-shot, *hellaswag* (`acc`)
|
| 62 |
-
- TruthfulQA: 0-shot, *
|
| 63 |
- MMLU: 0-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (average of all the results `acc`)
|
| 64 |
- Winogrande: 0-shot, *winogrande* (`acc`)
|
| 65 |
-
- Lambada_Openai: 0-shot, *lambada_openai* (`acc`)
|
| 66 |
- PIQA: 0-shot, *piqa* (`acc`)
|
| 67 |
- OpenBookQA: 0-shot, *openbookqa* (`acc`)
|
| 68 |
- BoolQ: 0-shot, *boolq* (`acc`)
|
|
|
|
| 59 |
- ARC-C: 0-shot, *arc_challenge* (`acc`)
|
| 60 |
- ARC-E: 0-shot, *arc_easy* (`acc`)
|
| 61 |
- HellaSwag: 0-shot, *hellaswag* (`acc`)
|
| 62 |
+
- TruthfulQA(Truthfulqa_mc1): 0-shot, *truthfulqa_mc1* (`acc`)
|
| 63 |
- MMLU: 0-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (average of all the results `acc`)
|
| 64 |
- Winogrande: 0-shot, *winogrande* (`acc`)
|
| 65 |
+
- Lambada(Lambada_Openai): 0-shot, *lambada_openai* (`acc`)
|
| 66 |
- PIQA: 0-shot, *piqa* (`acc`)
|
| 67 |
- OpenBookQA: 0-shot, *openbookqa* (`acc`)
|
| 68 |
- BoolQ: 0-shot, *boolq* (`acc`)
|
src/display/utils.py
CHANGED
|
@@ -18,12 +18,12 @@ class Tasks(Enum):
|
|
| 18 |
arc_easy = Task("arc:easy", "acc,none", "ARC-e")
|
| 19 |
boolq = Task("boolq", "acc,none", "Boolq")
|
| 20 |
hellaswag = Task("hellaswag", "acc,none", "HellaSwag")
|
| 21 |
-
lambada_openai = Task("lambada:openai", "acc,none", "
|
| 22 |
mmlu = Task("mmlu", "acc,none", "MMLU")
|
| 23 |
openbookqa = Task("openbookqa", "acc,none", "Openbookqa")
|
| 24 |
piqa = Task("piqa", "acc,none", "Piqa")
|
| 25 |
# truthfulqa:mc1 / truthfulqa:mc2 -- ?
|
| 26 |
-
truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "
|
| 27 |
# arc:challenge ?
|
| 28 |
# arc_challenge = Task("arc:challenge", "acc_norm,none", "Arc challenge")
|
| 29 |
# truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
|
|
@@ -50,6 +50,8 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
|
|
| 50 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 51 |
for task in Tasks:
|
| 52 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
|
|
|
|
|
| 53 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 54 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
| 55 |
# Model information
|
|
@@ -62,13 +64,14 @@ auto_eval_column_dict.append(["weight_dtype", ColumnContent, ColumnContent("Weig
|
|
| 62 |
auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)])
|
| 63 |
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
|
| 64 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 65 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 66 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 67 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
|
| 68 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 69 |
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
| 70 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 71 |
auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)])
|
|
|
|
| 72 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 73 |
# auto_eval_column_dict.sort(key=lambda x: x[0])
|
| 74 |
sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0])
|
|
@@ -258,6 +261,28 @@ class ComputeDtype(Enum):
|
|
| 258 |
if compute_dtype in ["float32"]:
|
| 259 |
return ComputeDtype.fp32
|
| 260 |
return ComputeDtype.Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
class Precision(Enum):
|
| 263 |
# float16 = ModelDetails("float16")
|
|
|
|
| 18 |
arc_easy = Task("arc:easy", "acc,none", "ARC-e")
|
| 19 |
boolq = Task("boolq", "acc,none", "Boolq")
|
| 20 |
hellaswag = Task("hellaswag", "acc,none", "HellaSwag")
|
| 21 |
+
lambada_openai = Task("lambada:openai", "acc,none", "Lambada")
|
| 22 |
mmlu = Task("mmlu", "acc,none", "MMLU")
|
| 23 |
openbookqa = Task("openbookqa", "acc,none", "Openbookqa")
|
| 24 |
piqa = Task("piqa", "acc,none", "Piqa")
|
| 25 |
# truthfulqa:mc1 / truthfulqa:mc2 -- ?
|
| 26 |
+
truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "Truthfulqa")
|
| 27 |
# arc:challenge ?
|
| 28 |
# arc_challenge = Task("arc:challenge", "acc_norm,none", "Arc challenge")
|
| 29 |
# truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
|
|
|
|
| 50 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 51 |
for task in Tasks:
|
| 52 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 53 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
|
| 54 |
+
auto_eval_column_dict.append(["model_size", ColumnContent, ColumnContent("#Size (G)", "number", True)])
|
| 55 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 56 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
| 57 |
# Model information
|
|
|
|
| 64 |
auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)])
|
| 65 |
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
|
| 66 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 67 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 68 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 69 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
|
| 70 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 71 |
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
| 72 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 73 |
auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)])
|
| 74 |
+
auto_eval_column_dict.append(["group_size", ColumnContent, ColumnContent("Group Size", "bool", False)])
|
| 75 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 76 |
# auto_eval_column_dict.sort(key=lambda x: x[0])
|
| 77 |
sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0])
|
|
|
|
| 261 |
if compute_dtype in ["float32"]:
|
| 262 |
return ComputeDtype.fp32
|
| 263 |
return ComputeDtype.Unknown
|
| 264 |
+
|
| 265 |
+
class GroupDtype(Enum):
|
| 266 |
+
group_1 = ModelDetails("-1")
|
| 267 |
+
group_1024 = ModelDetails("1024")
|
| 268 |
+
group_256 = ModelDetails("256")
|
| 269 |
+
group_128 = ModelDetails("128")
|
| 270 |
+
group_32 = ModelDetails("32")
|
| 271 |
+
|
| 272 |
+
group_all = ModelDetails("All")
|
| 273 |
+
|
| 274 |
+
def from_str(compute_dtype):
|
| 275 |
+
if compute_dtype in ["-1"]:
|
| 276 |
+
return GroupDtype.group_1
|
| 277 |
+
if compute_dtype in ["1024"]:
|
| 278 |
+
return GroupDtype.group_1024
|
| 279 |
+
if compute_dtype in ["256"]:
|
| 280 |
+
return GroupDtype.group_256
|
| 281 |
+
if compute_dtype in ["128"]:
|
| 282 |
+
return GroupDtype.group_128
|
| 283 |
+
if compute_dtype in ["32"]:
|
| 284 |
+
return GroupDtype.group_32
|
| 285 |
+
return GroupDtype.group_all
|
| 286 |
|
| 287 |
class Precision(Enum):
|
| 288 |
# float16 = ModelDetails("float16")
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -33,6 +33,8 @@ class EvalResult:
|
|
| 33 |
license: str = "?"
|
| 34 |
likes: int = 0
|
| 35 |
num_params: int = 0
|
|
|
|
|
|
|
| 36 |
date: str = "" # submission date of request file
|
| 37 |
still_on_hub: bool = True
|
| 38 |
is_merge: bool = False
|
|
@@ -57,6 +59,8 @@ class EvalResult:
|
|
| 57 |
compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16"))
|
| 58 |
double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
|
| 59 |
model_params = config["model_params"]
|
|
|
|
|
|
|
| 60 |
|
| 61 |
local = config.get("local", False)
|
| 62 |
if not local:
|
|
@@ -109,6 +113,8 @@ class EvalResult:
|
|
| 109 |
double_quant=double_quant,
|
| 110 |
revision=config.get("model_sha", "main"),
|
| 111 |
num_params=model_params,
|
|
|
|
|
|
|
| 112 |
)
|
| 113 |
|
| 114 |
def update_with_request_file(self, requests_path):
|
|
@@ -160,6 +166,8 @@ class EvalResult:
|
|
| 160 |
AutoEvalColumn.license.name: self.license,
|
| 161 |
AutoEvalColumn.likes.name: self.likes,
|
| 162 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
|
|
|
|
| 163 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 164 |
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
| 165 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
|
|
|
| 33 |
license: str = "?"
|
| 34 |
likes: int = 0
|
| 35 |
num_params: int = 0
|
| 36 |
+
model_size: int = 0
|
| 37 |
+
group_size: int = -1
|
| 38 |
date: str = "" # submission date of request file
|
| 39 |
still_on_hub: bool = True
|
| 40 |
is_merge: bool = False
|
|
|
|
| 59 |
compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16"))
|
| 60 |
double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
|
| 61 |
model_params = config["model_params"]
|
| 62 |
+
model_size = config["model_size"]
|
| 63 |
+
group_size = data["quantization_config"].get("group_size", -1)
|
| 64 |
|
| 65 |
local = config.get("local", False)
|
| 66 |
if not local:
|
|
|
|
| 113 |
double_quant=double_quant,
|
| 114 |
revision=config.get("model_sha", "main"),
|
| 115 |
num_params=model_params,
|
| 116 |
+
model_size=model_size,
|
| 117 |
+
group_size=group_size
|
| 118 |
)
|
| 119 |
|
| 120 |
def update_with_request_file(self, requests_path):
|
|
|
|
| 166 |
AutoEvalColumn.license.name: self.license,
|
| 167 |
AutoEvalColumn.likes.name: self.likes,
|
| 168 |
AutoEvalColumn.params.name: self.num_params,
|
| 169 |
+
AutoEvalColumn.model_size.name: self.model_size,
|
| 170 |
+
AutoEvalColumn.group_size.name: self.group_size,
|
| 171 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 172 |
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
| 173 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|