lvkaokao
commited on
Commit
Β·
c3c6a41
1
Parent(s):
b10d6d4
update model size filter.
Browse files- app.py +8 -7
- src/display/utils.py +9 -1
app.py
CHANGED
|
@@ -23,6 +23,7 @@ from src.display.utils import (
|
|
| 23 |
EVAL_COLS,
|
| 24 |
EVAL_TYPES,
|
| 25 |
NUMERIC_INTERVALS,
|
|
|
|
| 26 |
TYPES,
|
| 27 |
AutoEvalColumn,
|
| 28 |
GroupDtype,
|
|
@@ -203,8 +204,8 @@ def filter_models(
|
|
| 203 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 204 |
filtered_df = filtered_df.loc[mask]
|
| 205 |
|
| 206 |
-
numeric_interval_params = pd.IntervalIndex(sorted([
|
| 207 |
-
params_column_params = pd.to_numeric(df[AutoEvalColumn.
|
| 208 |
mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x)))
|
| 209 |
filtered_df = filtered_df.loc[mask_params]
|
| 210 |
|
|
@@ -214,7 +215,7 @@ leaderboard_df = filter_models(
|
|
| 214 |
df=leaderboard_df,
|
| 215 |
type_query=[t.to_str(" : ") for t in QuantType],
|
| 216 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 217 |
-
params_query=list(
|
| 218 |
precision_query=[i.value.name for i in Precision],
|
| 219 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs,
|
| 220 |
compute_dtype=[i.value.name for i in ComputeDtype],
|
|
@@ -266,8 +267,8 @@ with demo:
|
|
| 266 |
with gr.Row():
|
| 267 |
filter_columns_size = gr.CheckboxGroup(
|
| 268 |
label="Model sizes (GB, int4)",
|
| 269 |
-
choices=list(
|
| 270 |
-
value=list(
|
| 271 |
interactive=True,
|
| 272 |
elem_id="filter-columns-size",
|
| 273 |
)
|
|
@@ -333,8 +334,8 @@ with demo:
|
|
| 333 |
shown_columns,
|
| 334 |
filter_columns_type,
|
| 335 |
filter_columns_precision,
|
| 336 |
-
filter_columns_size,
|
| 337 |
filter_columns_parameters,
|
|
|
|
| 338 |
hide_models,
|
| 339 |
search_bar,
|
| 340 |
filter_columns_computeDtype,
|
|
@@ -377,8 +378,8 @@ with demo:
|
|
| 377 |
shown_columns,
|
| 378 |
filter_columns_type,
|
| 379 |
filter_columns_precision,
|
| 380 |
-
filter_columns_size,
|
| 381 |
filter_columns_parameters,
|
|
|
|
| 382 |
hide_models,
|
| 383 |
search_bar,
|
| 384 |
filter_columns_computeDtype,
|
|
|
|
| 23 |
EVAL_COLS,
|
| 24 |
EVAL_TYPES,
|
| 25 |
NUMERIC_INTERVALS,
|
| 26 |
+
NUMERIC_MODELSIZE,
|
| 27 |
TYPES,
|
| 28 |
AutoEvalColumn,
|
| 29 |
GroupDtype,
|
|
|
|
| 204 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 205 |
filtered_df = filtered_df.loc[mask]
|
| 206 |
|
| 207 |
+
numeric_interval_params = pd.IntervalIndex(sorted([NUMERIC_MODELSIZE[s] for s in params_query]))
|
| 208 |
+
params_column_params = pd.to_numeric(df[AutoEvalColumn.model_size.name], errors="coerce")
|
| 209 |
mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x)))
|
| 210 |
filtered_df = filtered_df.loc[mask_params]
|
| 211 |
|
|
|
|
| 215 |
df=leaderboard_df,
|
| 216 |
type_query=[t.to_str(" : ") for t in QuantType],
|
| 217 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 218 |
+
params_query=list(NUMERIC_MODELSIZE.keys()),
|
| 219 |
precision_query=[i.value.name for i in Precision],
|
| 220 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs,
|
| 221 |
compute_dtype=[i.value.name for i in ComputeDtype],
|
|
|
|
| 267 |
with gr.Row():
|
| 268 |
filter_columns_size = gr.CheckboxGroup(
|
| 269 |
label="Model sizes (GB, int4)",
|
| 270 |
+
choices=list(NUMERIC_MODELSIZE.keys()),
|
| 271 |
+
value=list(NUMERIC_MODELSIZE.keys()),
|
| 272 |
interactive=True,
|
| 273 |
elem_id="filter-columns-size",
|
| 274 |
)
|
|
|
|
| 334 |
shown_columns,
|
| 335 |
filter_columns_type,
|
| 336 |
filter_columns_precision,
|
|
|
|
| 337 |
filter_columns_parameters,
|
| 338 |
+
filter_columns_size,
|
| 339 |
hide_models,
|
| 340 |
search_bar,
|
| 341 |
filter_columns_computeDtype,
|
|
|
|
| 378 |
shown_columns,
|
| 379 |
filter_columns_type,
|
| 380 |
filter_columns_precision,
|
|
|
|
| 381 |
filter_columns_parameters,
|
| 382 |
+
filter_columns_size,
|
| 383 |
hide_models,
|
| 384 |
search_bar,
|
| 385 |
filter_columns_computeDtype,
|
src/display/utils.py
CHANGED
|
@@ -208,7 +208,7 @@ class QuantType(Enum):
|
|
| 208 |
awq = ModelDetails(name="AWQ", symbol="π©")
|
| 209 |
llama_cpp = ModelDetails(name="llama.cpp", symbol="πΆ")
|
| 210 |
bnb = ModelDetails(name="bitsandbytes", symbol="π¬")
|
| 211 |
-
autoround = ModelDetails(name="AutoRound", symbol="
|
| 212 |
Unknown = ModelDetails(name="?", symbol="?")
|
| 213 |
|
| 214 |
def to_str(self, separator=" "):
|
|
@@ -343,3 +343,11 @@ NUMERIC_INTERVALS = {
|
|
| 343 |
# "~60": pd.Interval(45, 70, closed="right"),
|
| 344 |
# "70+": pd.Interval(70, 10000, closed="right"),
|
| 345 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
awq = ModelDetails(name="AWQ", symbol="π©")
|
| 209 |
llama_cpp = ModelDetails(name="llama.cpp", symbol="πΆ")
|
| 210 |
bnb = ModelDetails(name="bitsandbytes", symbol="π¬")
|
| 211 |
+
autoround = ModelDetails(name="AutoRound", symbol="π")
|
| 212 |
Unknown = ModelDetails(name="?", symbol="?")
|
| 213 |
|
| 214 |
def to_str(self, separator=" "):
|
|
|
|
| 343 |
# "~60": pd.Interval(45, 70, closed="right"),
|
| 344 |
# "70+": pd.Interval(70, 10000, closed="right"),
|
| 345 |
}
|
| 346 |
+
|
| 347 |
+
NUMERIC_MODELSIZE = {
|
| 348 |
+
"?": pd.Interval(-1, 0, closed="right"),
|
| 349 |
+
"~4": pd.Interval(0, 4, closed="right"),
|
| 350 |
+
"~8": pd.Interval(4, 8, closed="right"),
|
| 351 |
+
"~16": pd.Interval(8, 16, closed="right"),
|
| 352 |
+
"~36": pd.Interval(16, 36, closed="right"),
|
| 353 |
+
}
|