Benjamin Consolvo
		
	commited on
		
		
					Commit 
							
							Β·
						
						5faa415
	
1
								Parent(s):
							
							6c62682
								
add gift lfs tracking for images
Browse files- .gitattributes +1 -0
- README.md +28 -50
- images/hf_vacaigent.png +3 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            images/hf_vacaigent.png filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    CHANGED
    
    | @@ -7,17 +7,18 @@ sdk: streamlit | |
| 7 | 
             
            sdk_version: 1.44.1
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            -
            license:  | 
| 11 | 
             
            short_description: Let AI agents plan your next vacation!
         | 
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            # ποΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
         | 
| 15 |  | 
| 16 | 
            -
             | 
| 17 |  | 
| 18 | 
            -
             | 
|  | |
|  | |
| 19 |  | 
| 20 | 
            -
            VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently, now with an added layer of interactivity and accessibility through Streamlit.
         | 
| 21 |  | 
| 22 | 
             
            **Check out the video below for code walkthrough** π
         | 
| 23 |  | 
| @@ -29,28 +30,25 @@ VacAIgent leverages the CrewAI framework to automate and enhance the trip planni | |
| 29 |  | 
| 30 | 
             
            ## CrewAI Framework
         | 
| 31 |  | 
| 32 | 
            -
            CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a  | 
| 33 | 
            -
             | 
| 34 | 
            -
            ## Streamlit Interface
         | 
| 35 |  | 
| 36 | 
            -
            The introduction of [Streamlit](https://streamlit.io/) transforms this application into an interactive web app, allowing users to easily input their preferences and receive tailored travel plans.
         | 
| 37 |  | 
| 38 | 
             
            ## Running the Application
         | 
| 39 |  | 
| 40 | 
             
            To experience the VacAIgent app:
         | 
| 41 |  | 
| 42 | 
             
            ### Pre-Requisites
         | 
| 43 | 
            -
            1.  | 
| 44 | 
            -
            2. Get the API  | 
| 45 | 
            -
            3.  | 
|  | |
| 46 |  | 
| 47 | 
             
            ### Deploy Trip Planner
         | 
| 48 |  | 
| 49 | 
             
            ####  Step 1
         | 
| 50 | 
             
            ```sh
         | 
| 51 | 
            -
            git clone https://github.com/ | 
| 52 | 
             
            ```
         | 
| 53 | 
            -
            * *Please make sure git is installed*
         | 
| 54 |  | 
| 55 | 
             
            #### Step 2
         | 
| 56 |  | 
| @@ -59,9 +57,10 @@ Insall Dependencies | |
| 59 | 
             
            pip install -r requirements.txt
         | 
| 60 | 
             
            ```
         | 
| 61 | 
             
            ####  Step 3
         | 
|  | |
| 62 |  | 
| 63 | 
             
            ```sh
         | 
| 64 | 
            -
            cd trip_planner_agent
         | 
| 65 | 
             
            ```
         | 
| 66 |  | 
| 67 | 
             
            create `.streamlit/secrets.toml` file and Update **Credentials**
         | 
| @@ -71,52 +70,35 @@ create `.streamlit/secrets.toml` file and Update **Credentials** | |
| 71 | 
             
            SERPER_API_KEY=""
         | 
| 72 | 
             
            SCRAPINGANT_API_KEY=""
         | 
| 73 | 
             
            OPENAI_API_KEY=""
         | 
| 74 | 
            -
            MODEL_ID=""
         | 
| 75 | 
            -
            MODEL_BASE_URL=""
         | 
|  | |
| 76 | 
             
            ```
         | 
|  | |
|  | |
| 77 | 
             
            #### Step 4
         | 
| 78 |  | 
| 79 | 
             
            Run the application
         | 
| 80 |  | 
| 81 | 
             
            ```sh
         | 
| 82 | 
            -
            streamlit run  | 
| 83 | 
             
            ```
         | 
| 84 |  | 
| 85 | 
            -
            Your application should be up and running
         | 
| 86 |  | 
| 87 | 
            -
            β
 **Disclaimer**: The application uses  | 
| 88 |  | 
| 89 | 
             
            ## Details & Explanation
         | 
| 90 |  | 
| 91 | 
            -
            - **Streamlit UI**: The Streamlit interface is implemented in `streamlit_app.py`, where users can input their trip details.
         | 
| 92 | 
             
            - **Components**:
         | 
| 93 | 
            -
              -  | 
| 94 | 
            -
              -  | 
| 95 | 
            -
              -  | 
| 96 | 
            -
              -  | 
| 97 | 
            -
             | 
| 98 | 
            -
            ## Using GPT 3.5
         | 
| 99 | 
            -
             | 
| 100 | 
            -
            To switch from GPT-4 to GPT-3.5, pass the llm argument in the agent constructor:
         | 
| 101 | 
            -
             | 
| 102 | 
            -
            ```python
         | 
| 103 | 
            -
            from langchain.chat_models import ChatOpenAI
         | 
| 104 | 
            -
             | 
| 105 | 
            -
            llm = ChatOpenAI(model='gpt-3.5-turbo') # Loading gpt-3.5-turbo (see more OpenAI models at https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4)
         | 
| 106 | 
            -
             | 
| 107 | 
            -
            class TripAgents:
         | 
| 108 | 
            -
                # ... existing methods
         | 
| 109 |  | 
| 110 | 
            -
             | 
| 111 | 
            -
                    return Agent(
         | 
| 112 | 
            -
                        role='Local Expert',
         | 
| 113 | 
            -
                        goal='Provide insights about the selected city',
         | 
| 114 | 
            -
                        tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
         | 
| 115 | 
            -
                        llm=llm,
         | 
| 116 | 
            -
                        verbose=True
         | 
| 117 | 
            -
                    )
         | 
| 118 |  | 
| 119 | 
            -
             | 
| 120 |  | 
| 121 | 
             
            ## Using Local Models with Ollama
         | 
| 122 |  | 
| @@ -157,8 +139,4 @@ class TripAgents: | |
| 157 |  | 
| 158 | 
             
            ## License
         | 
| 159 |  | 
| 160 | 
            -
            VacAIgent is open-sourced under the MIT  | 
| 161 | 
            -
             | 
| 162 | 
            -
             | 
| 163 | 
            -
             | 
| 164 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 7 | 
             
            sdk_version: 1.44.1
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            +
            license: mit
         | 
| 11 | 
             
            short_description: Let AI agents plan your next vacation!
         | 
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            # ποΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
         | 
| 15 |  | 
| 16 | 
            +
            VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently.
         | 
| 17 |  | 
| 18 | 
            +
            _Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner). You can find the application hosted on Hugging Face Spaces here:
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            [](https://huggingface.co/spaces/Intel/vacaigent)
         | 
| 21 |  | 
|  | |
| 22 |  | 
| 23 | 
             
            **Check out the video below for code walkthrough** π
         | 
| 24 |  | 
|  | |
| 30 |  | 
| 31 | 
             
            ## CrewAI Framework
         | 
| 32 |  | 
| 33 | 
            +
            CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a Streamlit user interface.
         | 
|  | |
|  | |
| 34 |  | 
|  | |
| 35 |  | 
| 36 | 
             
            ## Running the Application
         | 
| 37 |  | 
| 38 | 
             
            To experience the VacAIgent app:
         | 
| 39 |  | 
| 40 | 
             
            ### Pre-Requisites
         | 
| 41 | 
            +
            1. Get the API key from **scrapinagent.com** from  [scrapinagent](https://scrapingant.com/)
         | 
| 42 | 
            +
            2. Get the API from **SERPER API** from [serper]( https://serper.dev/)
         | 
| 43 | 
            +
            3. Bring your OpenAI compatible API key
         | 
| 44 | 
            +
            4. Bring your model endpoint URL and LLM model ID that you want to use
         | 
| 45 |  | 
| 46 | 
             
            ### Deploy Trip Planner
         | 
| 47 |  | 
| 48 | 
             
            ####  Step 1
         | 
| 49 | 
             
            ```sh
         | 
| 50 | 
            +
            git clone https://github.com/opea-project/Enterprise-Inference/
         | 
| 51 | 
             
            ```
         | 
|  | |
| 52 |  | 
| 53 | 
             
            #### Step 2
         | 
| 54 |  | 
|  | |
| 57 | 
             
            pip install -r requirements.txt
         | 
| 58 | 
             
            ```
         | 
| 59 | 
             
            ####  Step 3
         | 
| 60 | 
            +
            Add Streamlit secrets
         | 
| 61 |  | 
| 62 | 
             
            ```sh
         | 
| 63 | 
            +
            cd examples/trip_planner_agent
         | 
| 64 | 
             
            ```
         | 
| 65 |  | 
| 66 | 
             
            create `.streamlit/secrets.toml` file and Update **Credentials**
         | 
|  | |
| 70 | 
             
            SERPER_API_KEY=""
         | 
| 71 | 
             
            SCRAPINGANT_API_KEY=""
         | 
| 72 | 
             
            OPENAI_API_KEY=""
         | 
| 73 | 
            +
            MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
         | 
| 74 | 
            +
            MODEL_BASE_URL="https://api.inference.denvrdata.com/v1/"
         | 
| 75 | 
            +
             | 
| 76 | 
             
            ```
         | 
| 77 | 
            +
            **Note**: You can alternatively add these secrets directly to Hugging Face Spaces Secrets, under the Settings tab, if deploying the Streamlit application directly on Hugging Face.
         | 
| 78 | 
            +
             | 
| 79 | 
             
            #### Step 4
         | 
| 80 |  | 
| 81 | 
             
            Run the application
         | 
| 82 |  | 
| 83 | 
             
            ```sh
         | 
| 84 | 
            +
            streamlit run app.py
         | 
| 85 | 
             
            ```
         | 
| 86 |  | 
| 87 | 
            +
            Your application should be up and running in your web browser.
         | 
| 88 |  | 
| 89 | 
            +
            β
 **Disclaimer**: The application uses meta-llama/Llama-3.3-70B-Instruct by default. Ensure you have access to an OpenAI-compatible API and be aware of any associated costs.
         | 
| 90 |  | 
| 91 | 
             
            ## Details & Explanation
         | 
| 92 |  | 
|  | |
| 93 | 
             
            - **Components**:
         | 
| 94 | 
            +
              - [trip_tasks.py](trip_tasks.py): Contains task prompts for the agents.
         | 
| 95 | 
            +
              - [trip_agents.py](trip_agents.py): Manages the creation of agents.
         | 
| 96 | 
            +
              - [tools](tools) directory: Houses tool classes used by agents.
         | 
| 97 | 
            +
              - [app.py](app.py): The heart of the frontend Streamlit app.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 98 |  | 
| 99 | 
            +
            ## LLM Model
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 100 |  | 
| 101 | 
            +
            To switch the LLM model being used, you can switch the `MODEL_ID` in the `.streamlit/secrets.toml` file.
         | 
| 102 |  | 
| 103 | 
             
            ## Using Local Models with Ollama
         | 
| 104 |  | 
|  | |
| 139 |  | 
| 140 | 
             
            ## License
         | 
| 141 |  | 
| 142 | 
            +
            VacAIgent is open-sourced under the MIT license.
         | 
|  | |
|  | |
|  | |
|  | 
    	
        images/hf_vacaigent.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
