Spaces:
Runtime error
Runtime error
Upload FinBERT_training.py
Browse files- FinBERT_training.py +82 -0
FinBERT_training.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 3 |
+
os.environ['WANDB_DISABLED'] = "true"
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sklearn.preprocessing import LabelEncoder
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from transformers import (
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
DataCollatorWithPadding,
|
| 10 |
+
TrainingArguments,
|
| 11 |
+
Trainer,
|
| 12 |
+
AutoModelForSequenceClassification
|
| 13 |
+
)
|
| 14 |
+
from datasets import Dataset
|
| 15 |
+
|
| 16 |
+
#######################################
|
| 17 |
+
########## FinBERT training ###########
|
| 18 |
+
#######################################
|
| 19 |
+
|
| 20 |
+
class args:
|
| 21 |
+
model = 'ProsusAI/finbert'
|
| 22 |
+
|
| 23 |
+
df = pd.read_csv('all-data.csv',
|
| 24 |
+
names = ['labels','messages'],
|
| 25 |
+
encoding='ISO-8859-1')
|
| 26 |
+
|
| 27 |
+
df = df[['messages', 'labels']]
|
| 28 |
+
|
| 29 |
+
le = LabelEncoder()
|
| 30 |
+
df['labels'] = le.fit_transform(df['labels'])
|
| 31 |
+
|
| 32 |
+
X, y = df['messages'].values, df['labels'].values
|
| 33 |
+
|
| 34 |
+
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.1)
|
| 35 |
+
xtrain, xvalid, ytrain, yvalid = train_test_split(xtrain, ytrain, test_size=0.2)
|
| 36 |
+
|
| 37 |
+
train_dataset_raw = Dataset.from_dict({'text':xtrain, 'labels':ytrain})
|
| 38 |
+
valid_dataset_raw = Dataset.from_dict({'text':xvalid, 'labels':yvalid})
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
| 41 |
+
|
| 42 |
+
def tokenize_fn(examples):
|
| 43 |
+
return tokenizer(examples['text'], truncation=True)
|
| 44 |
+
|
| 45 |
+
train_dataset = train_dataset_raw.map(tokenize_fn, batched=True)
|
| 46 |
+
valid_dataset = valid_dataset_raw.map(tokenize_fn, batched=True)
|
| 47 |
+
|
| 48 |
+
data_collator = DataCollatorWithPadding(tokenizer)
|
| 49 |
+
|
| 50 |
+
model = AutoModelForSequenceClassification.from_pretrained(args.model)
|
| 51 |
+
|
| 52 |
+
train_args = TrainingArguments(
|
| 53 |
+
'./Finbert Trained/',
|
| 54 |
+
per_device_train_batch_size=16,
|
| 55 |
+
per_device_eval_batch_size=2*16,
|
| 56 |
+
num_train_epochs=5,
|
| 57 |
+
learning_rate=2e-5,
|
| 58 |
+
weight_decay=0.01,
|
| 59 |
+
warmup_ratio=0.1,
|
| 60 |
+
do_eval=True,
|
| 61 |
+
do_train=True,
|
| 62 |
+
do_predict=True,
|
| 63 |
+
evaluation_strategy='epoch',
|
| 64 |
+
save_strategy="no",
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
trainer = Trainer(
|
| 68 |
+
model,
|
| 69 |
+
train_args,
|
| 70 |
+
train_dataset=train_dataset,
|
| 71 |
+
eval_dataset=valid_dataset,
|
| 72 |
+
data_collator=data_collator,
|
| 73 |
+
tokenizer=tokenizer
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
trainer.train()
|
| 77 |
+
|
| 78 |
+
# saving the model and the weights
|
| 79 |
+
model.save_pretrained('fine_tuned_FinBERT')
|
| 80 |
+
# saving the tokenizer
|
| 81 |
+
tokenizer.save_pretrained("fine_tuned_FinBERT/tokenizer/")
|
| 82 |
+
|