Update index.html
Browse files- index.html +211 -178
index.html
CHANGED
|
@@ -1,173 +1,127 @@
|
|
| 1 |
<!doctype html>
|
| 2 |
<html lang="en">
|
| 3 |
<head>
|
| 4 |
-
<meta charset="utf-8" />
|
| 5 |
-
<meta name="viewport" content="width=device-width" />
|
| 6 |
-
<title>Iqra’Eval Shared Task</title>
|
| 7 |
-
<style>
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
.card {
|
| 96 |
-
max-width: 1200px;
|
| 97 |
-
background: white;
|
| 98 |
-
margin: 0 auto 40px auto;
|
| 99 |
-
padding: 2em 2.5em;
|
| 100 |
-
box-shadow: 0 4px 14px rgba(0,0,0,0.1);
|
| 101 |
-
border-radius: 12px;
|
| 102 |
-
}
|
| 103 |
-
|
| 104 |
-
/* Centering images and captions */
|
| 105 |
-
div img {
|
| 106 |
-
display: block;
|
| 107 |
-
margin: 20px auto;
|
| 108 |
-
max-width: 100%;
|
| 109 |
-
height: auto;
|
| 110 |
-
border-radius: 8px;
|
| 111 |
-
box-shadow: 0 4px 8px rgba(0,31,77,0.15);
|
| 112 |
-
}
|
| 113 |
-
|
| 114 |
-
.centered p {
|
| 115 |
-
text-align: center;
|
| 116 |
-
font-style: italic;
|
| 117 |
-
color: var(--navy-blue);
|
| 118 |
-
margin-top: 0.4em;
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
.highlight {
|
| 122 |
-
color: var(--coral);
|
| 123 |
-
font-weight: 700;
|
| 124 |
-
}
|
| 125 |
-
|
| 126 |
-
/* Lists inside paragraphs */
|
| 127 |
-
p > ul {
|
| 128 |
-
margin-top: 0.3em;
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
</style>
|
| 132 |
</head>
|
| 133 |
<body>
|
| 134 |
-
<div class="card">
|
| 135 |
<h1>Iqra’Eval Shared Task</h1>
|
| 136 |
|
| 137 |
-
<
|
| 138 |
-
<img src="IqraEval.png" alt="IqraEval Logo" />
|
| 139 |
-
</div>
|
| 140 |
|
| 141 |
-
<!-- Overview Section -->
|
| 142 |
<h2>Overview</h2>
|
| 143 |
<p>
|
| 144 |
-
|
| 145 |
</p>
|
| 146 |
<p>
|
| 147 |
-
|
| 148 |
</p>
|
| 149 |
|
| 150 |
-
<!-- Timeline Section -->
|
| 151 |
<h2>Timeline</h2>
|
| 152 |
<ul>
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
</ul>
|
| 162 |
|
| 163 |
-
<!-- Task Description -->
|
| 164 |
<h2>Task Description: Quranic Mispronunciation Detection System</h2>
|
| 165 |
<p>
|
| 166 |
-
|
| 167 |
-
Users read aloud vowelized Quranic verses; this model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
|
| 168 |
-
Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
|
| 169 |
</p>
|
| 170 |
-
|
| 171 |
<div class="centered">
|
| 172 |
<img src="task.png" alt="System Overview" />
|
| 173 |
<p>Figure: Overview of the Mispronunciation Detection Workflow</p>
|
|
@@ -175,7 +129,7 @@
|
|
| 175 |
|
| 176 |
<h3>1. Read the Verse</h3>
|
| 177 |
<p>
|
| 178 |
-
|
| 179 |
</p>
|
| 180 |
<p><strong>Example:</strong></p>
|
| 181 |
<ul>
|
|
@@ -188,64 +142,143 @@
|
|
| 188 |
|
| 189 |
<h3>2. Save Recording</h3>
|
| 190 |
<p>
|
| 191 |
-
|
| 192 |
</p>
|
| 193 |
|
| 194 |
<h3>3. Mispronunciation Detection</h3>
|
| 195 |
<p>
|
| 196 |
-
|
| 197 |
-
This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
|
| 198 |
</p>
|
| 199 |
<p><strong>Example of Mispronunciation:</strong></p>
|
| 200 |
<ul>
|
| 201 |
-
<li><strong>Reference
|
| 202 |
-
<li><strong>
|
| 203 |
<li>
|
| 204 |
-
<strong>Annotated
|
| 205 |
<code>< i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code>
|
| 206 |
</li>
|
| 207 |
</ul>
|
| 208 |
<p>
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
</p>
|
|
|
|
|
|
|
| 211 |
<p>
|
| 212 |
-
|
|
|
|
| 213 |
</p>
|
| 214 |
|
| 215 |
-
<h2>
|
| 216 |
<p>
|
| 217 |
-
|
|
|
|
| 218 |
</p>
|
|
|
|
|
|
|
| 219 |
<ul>
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
<strong>Evaluation set:</strong> QuranMB.v2 dataset with phoneme-level mispronunciation annotations, which includes:
|
| 225 |
-
<ul>
|
| 226 |
-
<li>QuranMB-Train: 9 hours (1,218 files) for development</li>
|
| 227 |
-
<li>QuranMB-Test: 8 hours (1,018 files) for evaluation</li>
|
| 228 |
-
</ul>
|
| 229 |
-
</li>
|
| 230 |
</ul>
|
|
|
|
| 231 |
|
| 232 |
-
<h2>Submission
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
<p>
|
| 234 |
-
|
| 235 |
</p>
|
| 236 |
|
| 237 |
-
<h2>Evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
<p>
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
</p>
|
| 241 |
|
| 242 |
-
<h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
<p>
|
| 244 |
-
|
| 245 |
-
<a href="mailto:support@iqraeval.org">support@iqraeval.org</a>.
|
| 246 |
</p>
|
| 247 |
|
| 248 |
-
</
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
</body>
|
| 250 |
</html>
|
| 251 |
|
|
|
|
| 1 |
<!doctype html>
|
| 2 |
<html lang="en">
|
| 3 |
<head>
|
| 4 |
+
<meta charset="utf-8" />
|
| 5 |
+
<meta name="viewport" content="width=device-width" />
|
| 6 |
+
<title>Iqra’Eval Shared Task</title>
|
| 7 |
+
<style>
|
| 8 |
+
:root {
|
| 9 |
+
--navy-blue: #001f4d;
|
| 10 |
+
--coral: #ff6f61;
|
| 11 |
+
--light-gray: #f5f7fa;
|
| 12 |
+
--text-dark: #222;
|
| 13 |
+
}
|
| 14 |
+
body {
|
| 15 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 16 |
+
background-color: var(--light-gray);
|
| 17 |
+
color: var(--text-dark);
|
| 18 |
+
margin: 20px;
|
| 19 |
+
line-height: 1.6;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: var(--navy-blue);
|
| 23 |
+
font-weight: 700;
|
| 24 |
+
margin-top: 1.2em;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
text-align: center;
|
| 28 |
+
font-size: 2.8rem;
|
| 29 |
+
margin-bottom: 0.3em;
|
| 30 |
+
}
|
| 31 |
+
h2 {
|
| 32 |
+
border-bottom: 3px solid var(--coral);
|
| 33 |
+
padding-bottom: 0.3em;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
color: var(--coral);
|
| 37 |
+
margin-top: 1em;
|
| 38 |
+
}
|
| 39 |
+
p, ul, pre {
|
| 40 |
+
max-width: 900px;
|
| 41 |
+
margin: 0.8em auto;
|
| 42 |
+
}
|
| 43 |
+
ul { padding-left: 1.2em; }
|
| 44 |
+
ul li { margin: 0.4em 0; }
|
| 45 |
+
code {
|
| 46 |
+
background-color: #eef4f8;
|
| 47 |
+
color: var(--navy-blue);
|
| 48 |
+
padding: 2px 6px;
|
| 49 |
+
border-radius: 4px;
|
| 50 |
+
font-family: Consolas, monospace;
|
| 51 |
+
font-size: 0.9em;
|
| 52 |
+
}
|
| 53 |
+
pre {
|
| 54 |
+
background-color: #eef4f8;
|
| 55 |
+
padding: 1em;
|
| 56 |
+
border-radius: 8px;
|
| 57 |
+
overflow-x: auto;
|
| 58 |
+
font-size: 0.95em;
|
| 59 |
+
}
|
| 60 |
+
a {
|
| 61 |
+
color: var(--coral);
|
| 62 |
+
text-decoration: none;
|
| 63 |
+
}
|
| 64 |
+
a:hover { text-decoration: underline; }
|
| 65 |
+
.card {
|
| 66 |
+
max-width: 960px;
|
| 67 |
+
background: white;
|
| 68 |
+
margin: 0 auto 40px;
|
| 69 |
+
padding: 2em 2.5em;
|
| 70 |
+
box-shadow: 0 4px 14px rgba(0,0,0,0.1);
|
| 71 |
+
border-radius: 12px;
|
| 72 |
+
}
|
| 73 |
+
img {
|
| 74 |
+
display: block;
|
| 75 |
+
margin: 20px auto;
|
| 76 |
+
max-width: 100%;
|
| 77 |
+
height: auto;
|
| 78 |
+
border-radius: 8px;
|
| 79 |
+
box-shadow: 0 4px 8px rgba(0,31,77,0.15);
|
| 80 |
+
}
|
| 81 |
+
.centered p {
|
| 82 |
+
text-align: center;
|
| 83 |
+
font-style: italic;
|
| 84 |
+
color: var(--navy-blue);
|
| 85 |
+
margin-top: 0.4em;
|
| 86 |
+
}
|
| 87 |
+
.highlight {
|
| 88 |
+
color: var(--coral);
|
| 89 |
+
font-weight: 700;
|
| 90 |
+
}
|
| 91 |
+
/* nested lists in paragraphs */
|
| 92 |
+
p > ul { margin-top: 0.3em; }
|
| 93 |
+
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
</head>
|
| 95 |
<body>
|
| 96 |
+
<div class="card">
|
| 97 |
<h1>Iqra’Eval Shared Task</h1>
|
| 98 |
|
| 99 |
+
<img src="IqraEval.png" alt="IqraEval Logo" />
|
|
|
|
|
|
|
| 100 |
|
|
|
|
| 101 |
<h2>Overview</h2>
|
| 102 |
<p>
|
| 103 |
+
<strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
|
| 104 |
</p>
|
| 105 |
<p>
|
| 106 |
+
Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
|
| 107 |
</p>
|
| 108 |
|
|
|
|
| 109 |
<h2>Timeline</h2>
|
| 110 |
<ul>
|
| 111 |
+
<li><strong>June 1, 2025</strong>: Official announcement</li>
|
| 112 |
+
<li><strong>June 10, 2025</strong>: Release of training data, dev set, phonetizer, baselines</li>
|
| 113 |
+
<li><strong>July 24, 2025</strong>: Registration deadline & test data release</li>
|
| 114 |
+
<li><strong>July 27, 2025</strong>: Test set submission closes</li>
|
| 115 |
+
<li><strong>July 30, 2025</strong>: Final results released</li>
|
| 116 |
+
<li><strong>August 15, 2025</strong>: System description papers due</li>
|
| 117 |
+
<li><strong>August 22, 2025</strong>: Notification of acceptance</li>
|
| 118 |
+
<li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
|
| 119 |
</ul>
|
| 120 |
|
|
|
|
| 121 |
<h2>Task Description: Quranic Mispronunciation Detection System</h2>
|
| 122 |
<p>
|
| 123 |
+
Design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations. Users read vowelized verses; the model predicts the spoken phoneme sequence and flags deviations. Evaluation is on the <strong>QuranMB.v2</strong> dataset with human‐annotated errors.
|
|
|
|
|
|
|
| 124 |
</p>
|
|
|
|
| 125 |
<div class="centered">
|
| 126 |
<img src="task.png" alt="System Overview" />
|
| 127 |
<p>Figure: Overview of the Mispronunciation Detection Workflow</p>
|
|
|
|
| 129 |
|
| 130 |
<h3>1. Read the Verse</h3>
|
| 131 |
<p>
|
| 132 |
+
System shows a <strong>Reference Verse</strong> plus its <strong>Reference Phoneme Sequence</strong>.
|
| 133 |
</p>
|
| 134 |
<p><strong>Example:</strong></p>
|
| 135 |
<ul>
|
|
|
|
| 142 |
|
| 143 |
<h3>2. Save Recording</h3>
|
| 144 |
<p>
|
| 145 |
+
User recites; system captures and stores the audio waveform.
|
| 146 |
</p>
|
| 147 |
|
| 148 |
<h3>3. Mispronunciation Detection</h3>
|
| 149 |
<p>
|
| 150 |
+
Model predicts the phoneme sequence—deviations from reference indicate mispronunciations.
|
|
|
|
| 151 |
</p>
|
| 152 |
<p><strong>Example of Mispronunciation:</strong></p>
|
| 153 |
<ul>
|
| 154 |
+
<li><strong>Reference:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code></li>
|
| 155 |
+
<li><strong>Predicted:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n s a E a a < i r u l l a h i</code></li>
|
| 156 |
<li>
|
| 157 |
+
<strong>Annotated:</strong>
|
| 158 |
<code>< i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code>
|
| 159 |
</li>
|
| 160 |
</ul>
|
| 161 |
<p>
|
| 162 |
+
Here, <code>$</code>→<code>s</code> and <code>i</code>→<code>u</code>; omission of <code>ta</code> went undetected.
|
| 163 |
+
</p>
|
| 164 |
+
|
| 165 |
+
<h2>Training Dataset: Description</h2>
|
| 166 |
+
<p>
|
| 167 |
+
Hosted on Hugging Face:
|
| 168 |
+
</p>
|
| 169 |
+
<ul>
|
| 170 |
+
<li>
|
| 171 |
+
<strong>Training:</strong> 79 h of MSA speech (Qur’anic recitations)
|
| 172 |
+
<code>load_dataset("IqraEval/Iqra_train", split="train")</code>
|
| 173 |
+
</li>
|
| 174 |
+
<li>
|
| 175 |
+
<strong>Development:</strong> 3.4 h for tuning
|
| 176 |
+
<code>load_dataset("IqraEval/Iqra_train", split="dev")</code>
|
| 177 |
+
</li>
|
| 178 |
+
</ul>
|
| 179 |
+
<p>
|
| 180 |
+
<strong>Columns:</strong>
|
| 181 |
+
<ul>
|
| 182 |
+
<li><code>audio</code>: waveform</li>
|
| 183 |
+
<li><code>sentence</code>: original text</li>
|
| 184 |
+
<li><code>index</code>: verse ID or –1</li>
|
| 185 |
+
<li><code>tashkeel_sentence</code>: fully diacritized</li>
|
| 186 |
+
<li><code>phoneme</code>: Nawar Halabi phonetizer output</li>
|
| 187 |
+
</ul>
|
| 188 |
</p>
|
| 189 |
+
|
| 190 |
+
<h2>Training Dataset: TTS Data (Optional)</h2>
|
| 191 |
<p>
|
| 192 |
+
Auxiliary high-quality TTS corpus for augmentation:
|
| 193 |
+
<code>load_dataset("IqraEval/Iqra_TTS")</code>
|
| 194 |
</p>
|
| 195 |
|
| 196 |
+
<h2>Test Dataset: QuranMB_v2</h2>
|
| 197 |
<p>
|
| 198 |
+
98 verses × 18 speakers ≈ 2 h, with deliberate errors and human annotations.
|
| 199 |
+
<code>load_dataset("IqraEval/Iqra_QuranMB_v2")</code>
|
| 200 |
</p>
|
| 201 |
+
|
| 202 |
+
<h2>Resources & Links</h2>
|
| 203 |
<ul>
|
| 204 |
+
<li><a href="https://github.com/Iqra-Eval/MSA_phonetiser" target="_blank">Phonetiser script (GitHub)</a></li>
|
| 205 |
+
<li><a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">Training & Dev Data (Hugging Face)</a></li>
|
| 206 |
+
<li><a href="https://huggingface.co/datasets/IqraEval/Iqra_TTS" target="_blank">TTS Data (Hugging Face)</a></li>
|
| 207 |
+
<li><a href="https://github.com/Iqra-Eval/interspeech_IqraEval" target="_blank">Baseline Systems & Scripts (GitHub)</a></li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
</ul>
|
| 209 |
+
<p><em>See the main <a href="https://github.com/Iqra-Eval" target="_blank">GitHub</a> for full instructions.</em></p>
|
| 210 |
|
| 211 |
+
<h2>Submission Details (Draft)</h2>
|
| 212 |
+
<p>
|
| 213 |
+
Submit a UTF-8 CSV named <code>teamID_submission.csv</code> with two columns:
|
| 214 |
+
</p>
|
| 215 |
+
<ul>
|
| 216 |
+
<li><strong>ID:</strong> audio filename (no extension)</li>
|
| 217 |
+
<li><strong>Labels:</strong> predicted phoneme sequence (space-separated)</li>
|
| 218 |
+
</ul>
|
| 219 |
+
<pre>
|
| 220 |
+
ID,Labels
|
| 221 |
+
0000_0001, i n n a m a a y a …
|
| 222 |
+
0000_0002, m a a n a n s a …
|
| 223 |
+
…
|
| 224 |
+
</pre>
|
| 225 |
<p>
|
| 226 |
+
<strong>Note:</strong> no extra spaces, single CSV, no archives.
|
| 227 |
</p>
|
| 228 |
|
| 229 |
+
<h2>Evaluation Criteria</h2>
|
| 230 |
+
<p>
|
| 231 |
+
Leaderboard based on phoneme-level F1-score.
|
| 232 |
+
We use a hierarchical evaluation (detection + diagnostic) per <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>.
|
| 233 |
+
</p>
|
| 234 |
+
<ul>
|
| 235 |
+
<li><em>What is said</em>: annotated phoneme sequence</li>
|
| 236 |
+
<li><em>What is predicted</em>: model output</li>
|
| 237 |
+
<li><em>What should have been said</em>: reference sequence</li>
|
| 238 |
+
</ul>
|
| 239 |
+
<p>From these we compute:</p>
|
| 240 |
+
<ul>
|
| 241 |
+
<li><strong>TA:</strong> correct phonemes accepted</li>
|
| 242 |
+
<li><strong>TR:</strong> mispronunciations correctly detected</li>
|
| 243 |
+
<li><strong>FR:</strong> correct phonemes flagged as errors</li>
|
| 244 |
+
<li><strong>FA:</strong> mispronunciations missed</li>
|
| 245 |
+
</ul>
|
| 246 |
+
<p>Rates:</p>
|
| 247 |
+
<ul>
|
| 248 |
+
<li><strong>FRR:</strong> FR/(TA+FR)</li>
|
| 249 |
+
<li><strong>FAR:</strong> FA/(FA+TR)</li>
|
| 250 |
+
<li><strong>DER:</strong> DE/(CD+DE)</li>
|
| 251 |
+
</ul>
|
| 252 |
<p>
|
| 253 |
+
Plus standard Precision, Recall, F1 for detection:
|
| 254 |
+
<ul>
|
| 255 |
+
<li>Precision = TR/(TR+FR)</li>
|
| 256 |
+
<li>Recall = TR/(TR+FA)</li>
|
| 257 |
+
<li>F1 = 2·P·R/(P+R)</li>
|
| 258 |
+
</ul>
|
| 259 |
</p>
|
| 260 |
|
| 261 |
+
<h2>Potential Research Directions</h2>
|
| 262 |
+
<ol>
|
| 263 |
+
<li><strong>Advanced Models:</strong> fine-tune Wav2Vec2.0, HuBERT on Arabic/Quranic speech.</li>
|
| 264 |
+
<li><strong>Data Augmentation:</strong> use SpeechBlender to synthesize mispronunciations.</li>
|
| 265 |
+
<li><strong>Pattern Analysis:</strong> statistical study of QuranMB errors to guide training.</li>
|
| 266 |
+
</ol>
|
| 267 |
+
|
| 268 |
+
<h2>Future Updates</h2>
|
| 269 |
<p>
|
| 270 |
+
Detailed scoring weights, submission templates, and clarifications will be posted on the shared task site when test data is released (June 5, 2025).
|
|
|
|
| 271 |
</p>
|
| 272 |
|
| 273 |
+
<h2>References</h2>
|
| 274 |
+
<ul>
|
| 275 |
+
<li>El Kheir Y. et al., “SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation,” arXiv:2211.00923, 2022.</li>
|
| 276 |
+
<li>Al Harere A. & Al Jallad K., “Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning,” arXiv:2305.06429, 2023.</li>
|
| 277 |
+
<li>Aly S. A. et al., “ASMDD: Arabic Speech Mispronunciation Detection Dataset,” arXiv:2111.01136, 2021.</li>
|
| 278 |
+
<li>Moustafa A. & Aly S. A., “Efficient Voice Identification Using Wav2Vec2.0 and HuBERT…,” arXiv:2111.06331, 2021.</li>
|
| 279 |
+
<li>El Kheir Y. et al., “Automatic Pronunciation Assessment – A Review,” arXiv:2310.13974, 2021.</li>
|
| 280 |
+
</ul>
|
| 281 |
+
</div>
|
| 282 |
</body>
|
| 283 |
</html>
|
| 284 |
|