Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras.models import load_model
|
| 5 |
+
from collections import Counter
|
| 6 |
+
|
| 7 |
+
# Creating a numpy array of shape (8, 16, 1)
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
flow_field = np.ones((128,256), dtype = np.uint8)
|
| 14 |
+
|
| 15 |
+
# Changing the left input side
|
| 16 |
+
flow_field[:,0] = 3
|
| 17 |
+
# Changing the right output side
|
| 18 |
+
flow_field[:,-1] = 4
|
| 19 |
+
# Changing the top layer
|
| 20 |
+
flow_field[0,:] = 2
|
| 21 |
+
# Changing the bottom layer
|
| 22 |
+
flow_field[-1,:] = 2
|
| 23 |
+
|
| 24 |
+
def nvs_loss(y_pred, rho=10, nu=0.0001): #arbitary rho and nu(Later use values of air)
|
| 25 |
+
u,v,p = tf.split(y_pred, 3, axis=3)
|
| 26 |
+
|
| 27 |
+
#First order derivative
|
| 28 |
+
du_dx, du_dy = tf.image.image_gradients(u) # tf.image.image_gradients returns a tuple containing two tensors: u-grad along the x dir and u-grad along the y dir
|
| 29 |
+
dv_dx, dv_dy = tf.image.image_gradients(v)
|
| 30 |
+
dp_dx, dp_dy = tf.image.image_gradients(p)
|
| 31 |
+
|
| 32 |
+
#Second order derivatives
|
| 33 |
+
du_dx2, du_dydx = tf.image.image_gradients(du_dx) # du_dydx will be unused
|
| 34 |
+
du_dxdy, du_dy2 = tf.image.image_gradients(du_dy) # du_dxdy will be unused
|
| 35 |
+
|
| 36 |
+
dv_dx2, dv_dydx = tf.image.image_gradients(dv_dx)
|
| 37 |
+
dv_dxdy, dv_dy2 = tf.image.image_gradients(dv_dy)
|
| 38 |
+
|
| 39 |
+
#Momentum equation
|
| 40 |
+
er1_tensor = tf.math.multiply(u, du_dx) + tf.math.multiply(v, du_dy) + 1.0*dp_dx/rho - nu*(du_dx2 + du_dy2)
|
| 41 |
+
er2_tensor = tf.math.multiply(u, dv_dx) + tf.math.multiply(v, dv_dy) + 1.0*dp_dy/rho - nu*(dv_dx2 + dv_dy2)
|
| 42 |
+
|
| 43 |
+
# # #Continuity equation
|
| 44 |
+
er3_tensor = du_dx + dv_dy
|
| 45 |
+
|
| 46 |
+
er1 = tf.reduce_mean(er1_tensor)
|
| 47 |
+
er2 = tf.reduce_mean(er2_tensor)
|
| 48 |
+
er3 = tf.reduce_mean(er3_tensor)
|
| 49 |
+
|
| 50 |
+
return er1*er1 + er2*er2 + er3*er3
|
| 51 |
+
|
| 52 |
+
# Initiating the Loss Function-
|
| 53 |
+
def custom_loss(y_true, y_pred):
|
| 54 |
+
nv_loss = nvs_loss(y_pred)
|
| 55 |
+
mse_loss = tf.reduce_mean(tf.square(y_true-y_pred)) # Try mse loss function here
|
| 56 |
+
return mse_loss + nv_loss
|
| 57 |
+
|
| 58 |
+
import torch
|
| 59 |
+
import matplotlib
|
| 60 |
+
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
| 61 |
+
"""Converts a depth map to a color image.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
| 65 |
+
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
| 66 |
+
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
| 67 |
+
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
| 68 |
+
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
| 69 |
+
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
| 70 |
+
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
| 71 |
+
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
| 72 |
+
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
| 76 |
+
"""
|
| 77 |
+
if isinstance(value, torch.Tensor):
|
| 78 |
+
value = value.detach().cpu().numpy()
|
| 79 |
+
|
| 80 |
+
value = value.squeeze()
|
| 81 |
+
if invalid_mask is None:
|
| 82 |
+
invalid_mask = value == invalid_val
|
| 83 |
+
mask = np.logical_not(invalid_mask)
|
| 84 |
+
|
| 85 |
+
# normalize
|
| 86 |
+
# vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
| 87 |
+
# vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
| 88 |
+
vmin = np.min(value[mask]) if vmin is None else vmin
|
| 89 |
+
vmax = np.max(value[mask]) if vmax is None else vmax
|
| 90 |
+
if vmin != vmax:
|
| 91 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
| 92 |
+
else:
|
| 93 |
+
# Avoid 0-division
|
| 94 |
+
value = value * 0.
|
| 95 |
+
|
| 96 |
+
# squeeze last dim if it exists
|
| 97 |
+
# grey out the invalid values
|
| 98 |
+
|
| 99 |
+
value[invalid_mask] = np.nan
|
| 100 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
| 101 |
+
if value_transform:
|
| 102 |
+
value = value_transform(value)
|
| 103 |
+
# value = value / value.max()
|
| 104 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
| 105 |
+
|
| 106 |
+
# img = value[:, :, :]
|
| 107 |
+
img = value[...]
|
| 108 |
+
img[invalid_mask] = background_color
|
| 109 |
+
|
| 110 |
+
# return img.transpose((2, 0, 1))
|
| 111 |
+
if gamma_corrected:
|
| 112 |
+
# gamma correction
|
| 113 |
+
img = img / 255
|
| 114 |
+
img = np.power(img, 2.2)
|
| 115 |
+
img = img * 255
|
| 116 |
+
img = img.astype(np.uint8)
|
| 117 |
+
return img
|
| 118 |
+
|
| 119 |
+
def img_preprocess(image, h, w):
|
| 120 |
+
# Convert the drawn image to grayscale
|
| 121 |
+
img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 122 |
+
|
| 123 |
+
# Threshold the grayscale image to create a binary image
|
| 124 |
+
_, binary_img = cv2.threshold(img_gray, 1, 255, cv2.THRESH_BINARY)
|
| 125 |
+
|
| 126 |
+
# Perform flood fill starting from a point inside the shape. Fill the inside with pixel value 0
|
| 127 |
+
seed_point = (int(h/2), int(w/2))
|
| 128 |
+
retval, flooded_image, mask, rect = cv2.floodFill(binary_img, None, seed_point, 0)
|
| 129 |
+
flooded_image = (flooded_image/255).astype(np.uint8)
|
| 130 |
+
return flooded_image
|
| 131 |
+
|
| 132 |
+
def patch_stiching(flooded_image, h, w, x0, y0): # ((x0, y0) = center of channel, (w1, h1) = height and width of patch)
|
| 133 |
+
flow_field_updated = np.copy(flow_field)
|
| 134 |
+
print('flow field updated - ', flow_field_updated[:,-1])
|
| 135 |
+
flow_field_updated[int(x0-w/2):int(x0+w/2),int(y0-h/2):int(y0+h/2)] = flooded_image
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# flow_field_updated is the main thing that we will use to make our predictions on -
|
| 139 |
+
test_img = np.expand_dims(flow_field_updated, axis = 0)
|
| 140 |
+
test_img = np.expand_dims(test_img, axis = 3) # Shape of test_img = (1, 128, 256)
|
| 141 |
+
return test_img
|
| 142 |
+
|
| 143 |
+
# Define grid points
|
| 144 |
+
x_points = np.linspace(0, 255, 256)
|
| 145 |
+
y_points = np.linspace(0, 127, 128)
|
| 146 |
+
X, Y = np.meshgrid(x_points, y_points)
|
| 147 |
+
|
| 148 |
+
def return_quiver_plot(u, v):
|
| 149 |
+
velocity = np.sqrt(u**2 + v**2)
|
| 150 |
+
ax = plt.subplot()
|
| 151 |
+
ax.imshow(velocity, origin = 'lower', extent = (0,256, 0,128), cmap = 'gray')
|
| 152 |
+
q = ax.quiver(X[5::8,5::8], Y[5::8,5::8], u[5::8,5::8], u[5::8,5::8], pivot = 'middle', color = 'red')
|
| 153 |
+
# ax.quiverkey(q, X=0.9, Y=1.05, U=2,
|
| 154 |
+
# label='m/s', labelpos='E')
|
| 155 |
+
# plt.title("Velocity distribution")
|
| 156 |
+
# plt.show()
|
| 157 |
+
return q
|
| 158 |
+
|
| 159 |
+
def squeeze_function(img):
|
| 160 |
+
img = np.squeeze(img, axis = 0)
|
| 161 |
+
img = np.squeeze(img, axis = 2)
|
| 162 |
+
return img
|
| 163 |
+
|
| 164 |
+
# Taking a shape from the user on sketchpad and placing it inside the fluid flow -
|
| 165 |
+
|
| 166 |
+
h, w = 48, 48 # patch_size in which the obstacle will be drawn
|
| 167 |
+
x0, y0 = 64, 128 # (x0, y0) = center of channel
|
| 168 |
+
|
| 169 |
+
def fill_shape_with_pixels(img): #img is taken by gradio as uint8
|
| 170 |
+
if img is None:
|
| 171 |
+
return np.zeros((h, w), dtype=np.uint8) # "No input sketch"
|
| 172 |
+
# Calling the the flooded image function to fill inside the obstacle
|
| 173 |
+
flooded_image = img_preprocess(img, h, w)
|
| 174 |
+
# Performing patch statching to put the obstacle at the required center position
|
| 175 |
+
test_img = patch_stiching(flooded_image, h, w, x0, y0)
|
| 176 |
+
|
| 177 |
+
# Loading and Compiling the Model
|
| 178 |
+
model_path = "/content/drive/MyDrive/Pinns_Loss_file.h5"
|
| 179 |
+
model = load_model(model_path, compile = False)
|
| 180 |
+
model.compile(loss=custom_loss, optimizer=tf.keras.optimizers.AdamW(learning_rate = 0.0001), metrics=['mae', 'cosine_proximity'])
|
| 181 |
+
|
| 182 |
+
# Making Model prediction from input sketch shape
|
| 183 |
+
prediction = model.predict(test_img) # (prediction.shape = (1, 128, 256, 3))
|
| 184 |
+
u_pred, v_pred, p_pred = np.split(prediction, 3, axis=3) # shape of u_pred, v_pred, p_pred = (1, 128, 256, 1)
|
| 185 |
+
|
| 186 |
+
# Making test_img in shape required by zero_pixel_location
|
| 187 |
+
req_img = squeeze_function(test_img)
|
| 188 |
+
|
| 189 |
+
# Storing the location of 0 pixel values
|
| 190 |
+
#req_img = req_img.astype(int)
|
| 191 |
+
zero_pixel_locations = np.argwhere(req_img == 0)
|
| 192 |
+
|
| 193 |
+
# Reducing the dimensions-
|
| 194 |
+
u_profile = u_pred[0][:,:,0] # shape of u profile to compatible shape (H, W) = (128, 256)
|
| 195 |
+
v_profile = v_pred[0][:,:,0]
|
| 196 |
+
p_profile = p_pred[0][:,:,0]
|
| 197 |
+
p_profile[p_profile>1.6] = 1.6
|
| 198 |
+
|
| 199 |
+
# Creating a copy of the above profiles-
|
| 200 |
+
u_profile_dash = np.copy(u_profile)
|
| 201 |
+
v_profile_dash = np.copy(v_profile)
|
| 202 |
+
|
| 203 |
+
# Creating a copy of the above profiles-
|
| 204 |
+
u_profile_dash_1 = np.copy(u_profile)
|
| 205 |
+
v_profile_dash_1 = np.copy(v_profile)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# Hollowing the obstacle out from the u and v plots. Origin of imae is lop left and origin of plot is top right
|
| 209 |
+
for y, x in zero_pixel_locations:
|
| 210 |
+
u_profile_dash[128 - y, x] = 0
|
| 211 |
+
v_profile_dash[128 - y, x] = 0
|
| 212 |
+
# will be used for image
|
| 213 |
+
u_profile_dash_1[y, x] = 0
|
| 214 |
+
v_profile_dash_1[y, x] = 0
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# Quiver Plot
|
| 218 |
+
quiver_plot = plt.figure(figsize = (14,6), edgecolor = "gray")
|
| 219 |
+
velocity = np.sqrt(u_profile_dash_1**2 + v_profile_dash_1**2)
|
| 220 |
+
ax = plt.subplot()
|
| 221 |
+
ax.imshow(velocity, cmap = 'gray', extent = (0,256, 0,128))
|
| 222 |
+
q = ax.quiver(X[5::7,5::7], Y[5::7,5::7], u_profile_dash[5::7,5::7], v_profile_dash[5::7,5::7], pivot = 'middle', color = 'red')
|
| 223 |
+
ax.quiverkey(q, X=0.9, Y=1.07, U=2,
|
| 224 |
+
label='m/s', labelpos='E')
|
| 225 |
+
plt.title("Velocity distribution", fontsize = 11)
|
| 226 |
+
plt.xlabel("Length of Channel", fontsize = 11)
|
| 227 |
+
plt.ylabel("Height of Channel", fontsize = 11)
|
| 228 |
+
|
| 229 |
+
# StreamLine Plot
|
| 230 |
+
streamline_plot = plt.figure(figsize = (14,6), edgecolor = "gray")
|
| 231 |
+
plt.streamplot(X, Y, u_profile_dash, v_profile_dash, density = 3.5)
|
| 232 |
+
plt.axis('scaled')
|
| 233 |
+
plt.title("Streamline Plot", fontsize = 11)
|
| 234 |
+
plt.xlabel("Length of Channel", fontsize = 11)
|
| 235 |
+
plt.ylabel("Height of Channel", fontsize = 11)
|
| 236 |
+
|
| 237 |
+
# Colorize taken from ZoeDepth Model
|
| 238 |
+
u_colored = colorize(u_profile, cmap = 'jet')
|
| 239 |
+
#cbar_u = plt.colorbar(u_profile,fraction=0.025, pad=0.05)
|
| 240 |
+
v_colored = colorize(v_profile, cmap = 'jet')
|
| 241 |
+
#cbar_v = plt.colorbar(v_colored,fraction=0.025, pad=0.05)
|
| 242 |
+
p_colored = colorize(p_profile, cmap = 'jet')
|
| 243 |
+
#cbar_p = plt.colorbar(p_colored,fraction=0.025, pad=0.05)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
return colorize(req_img, cmap = 'jet'), quiver_plot, streamline_plot, u_colored, v_colored, p_colored
|
| 247 |
+
|
| 248 |
+
# Importing gr.Blocks()
|
| 249 |
+
|
| 250 |
+
with gr.Blocks(theme="Taithrah/Minimal") as demo:
|
| 251 |
+
gr.Markdown(
|
| 252 |
+
"""
|
| 253 |
+
# Physics Constrained DNN for Predicting Mean Turbulent Flows
|
| 254 |
+
The App solves 2-D incompressible steady state NS equations for any given 2-D closed geometry. Geometry needs to be drawn around the center of the patch.\n
|
| 255 |
+
It predicts the streamlines,horizontal & vertical velocity profiles and the pressure profiles using a hybrid loss function.\n
|
| 256 |
+
""")
|
| 257 |
+
with gr.Row():
|
| 258 |
+
with gr.Column():
|
| 259 |
+
input_sketch = gr.Image(label = "Draw any Obstacle contour around the patch center",
|
| 260 |
+
tool="sketch", source="canvas", shape=(h, w), brush_radius = 3)
|
| 261 |
+
Process_button = gr.Button("Process Flow Parameters")
|
| 262 |
+
|
| 263 |
+
with gr.Column():
|
| 264 |
+
filled_channel = gr.Image(label = "Drawn object inside a Channel of dimensions 128*256", container = True)
|
| 265 |
+
|
| 266 |
+
with gr.Row():
|
| 267 |
+
quiver_plot = gr.Plot(label = "Velocity Distribution Around The Obstacle", scale = 2)
|
| 268 |
+
|
| 269 |
+
with gr.Row():
|
| 270 |
+
streamline_plot = gr.Plot(label = "Stream Lines Around The Obstacle", scale = 2)
|
| 271 |
+
|
| 272 |
+
with gr.Row():
|
| 273 |
+
u_image = gr.Image(label = "Horizontal Velocity")
|
| 274 |
+
v_image = gr.Image(label = "Vertical Velocity")
|
| 275 |
+
p_image = gr.Image(label = "Pressure")
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
Process_button.click(fn=fill_shape_with_pixels, inputs=input_sketch, outputs=[filled_channel, quiver_plot, streamline_plot, u_image, v_image, p_image])
|
| 279 |
+
|
| 280 |
+
demo.launch(debug=True, server_name = "0.0.0.0", share = True, inline = False)
|