Spaces:
Running
Running
Create script.js
Browse files
script.js
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// colab link: [...]
|
| 2 |
+
|
| 3 |
+
function MnistRNN() {
|
| 4 |
+
var model = this;
|
| 5 |
+
|
| 6 |
+
this.weights_meta = {
|
| 7 |
+
'(MnistNet).dropout(Dropout).keygen(Generator)._key': [[1973249, 1973251], [2]],
|
| 8 |
+
'(MnistNet).lstm_core(LSTMCore).fc(Linear).b': [[266496, 268544], [2048]],
|
| 9 |
+
'(MnistNet).lstm_core(LSTMCore).fc(Linear).w': [[268544, 1841408], [768, 2048]],
|
| 10 |
+
'(MnistNet).output_head(Linear).b': [[1841408, 1841665], [257]],
|
| 11 |
+
'(MnistNet).output_head(Linear).w': [[1841665, 1973249], [512, 257]],
|
| 12 |
+
'(MnistNet).pos_embed(Embed).embeddings': [[0, 200704], [784, 256]],
|
| 13 |
+
'(MnistNet).value_embed(Embed).embeddings': [[200704, 266496], [257, 256]]
|
| 14 |
+
};
|
| 15 |
+
|
| 16 |
+
this.is_model_ready = false;
|
| 17 |
+
|
| 18 |
+
this.embed_lookup = function(index, weights) {
|
| 19 |
+
return tf.slice(weights, [index], [1]);
|
| 20 |
+
};
|
| 21 |
+
|
| 22 |
+
this.pos = 0;
|
| 23 |
+
this.state = null;
|
| 24 |
+
this.start_token = 256;
|
| 25 |
+
this.hidden_size = this.weights_meta['(MnistNet).lstm_core(LSTMCore).fc(Linear).b'][1][0] / 4;
|
| 26 |
+
|
| 27 |
+
this.initialize_state = function() {
|
| 28 |
+
this.pos = 0;
|
| 29 |
+
this.token = this.start_token;
|
| 30 |
+
var hidden = tf.zeros([1, this.hidden_size]);
|
| 31 |
+
var cell = tf.zeros([1, this.hidden_size]);
|
| 32 |
+
this.state = [hidden, cell];
|
| 33 |
+
};
|
| 34 |
+
|
| 35 |
+
this.lstm_core = function(inputs, state, weights) {
|
| 36 |
+
const [hidden, cell] = state;
|
| 37 |
+
const [w, b] = weights;
|
| 38 |
+
const i_and_h =tf.concat([inputs, hidden], 1);
|
| 39 |
+
const gated = tf.add(tf.matMul(i_and_h, w), b);
|
| 40 |
+
const [i, g, f, o] = tf.split(gated, 4, 1);
|
| 41 |
+
const f_ = tf.sigmoid(tf.add(f, 1.));
|
| 42 |
+
const i_ = tf.sigmoid(i);
|
| 43 |
+
const g_ = tf.tanh(g);
|
| 44 |
+
const c = tf.add(
|
| 45 |
+
tf.mul(i_, g_),
|
| 46 |
+
tf.mul(cell, f_)
|
| 47 |
+
);
|
| 48 |
+
const h = tf.mul(
|
| 49 |
+
tf.sigmoid(o),
|
| 50 |
+
tf.tanh(c)
|
| 51 |
+
);
|
| 52 |
+
return [h, c];
|
| 53 |
+
};
|
| 54 |
+
|
| 55 |
+
this.step = function() {
|
| 56 |
+
const [token, h, c] = tf.tidy( function() {
|
| 57 |
+
const lstm_b = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).b'];
|
| 58 |
+
const lstm_w = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).w'];
|
| 59 |
+
const output_b = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).b'];
|
| 60 |
+
const output_w = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).w'];
|
| 61 |
+
const pos_embed = model.MODEL_WEIGHTS['(MnistNet).pos_embed(Embed).embeddings'];
|
| 62 |
+
const value_embed = model.MODEL_WEIGHTS['(MnistNet).value_embed(Embed).embeddings'];
|
| 63 |
+
const v = model.embed_lookup(model.token, value_embed);
|
| 64 |
+
const p = model.embed_lookup(model.pos, pos_embed);
|
| 65 |
+
const x = tf.add(v, p);
|
| 66 |
+
const [h, c] = model.lstm_core(x, model.state, [lstm_w, lstm_b]);
|
| 67 |
+
tf.dispose(model.state[0]);
|
| 68 |
+
tf.dispose(model.state[1]);
|
| 69 |
+
const logits = tf.add(
|
| 70 |
+
tf.matMul(h, output_w),
|
| 71 |
+
output_b
|
| 72 |
+
);
|
| 73 |
+
const token = tf.multinomial(logits, 1).dataSync()[0];
|
| 74 |
+
|
| 75 |
+
return [token, h, c];
|
| 76 |
+
});
|
| 77 |
+
|
| 78 |
+
this.clean_memory();
|
| 79 |
+
this.token = token;
|
| 80 |
+
this.state = [h, c];
|
| 81 |
+
canvas.plot_xyc(this.pos, token);
|
| 82 |
+
this.pos = this.pos + 1;
|
| 83 |
+
};
|
| 84 |
+
|
| 85 |
+
this.MODEL_WEIGHTS = {};
|
| 86 |
+
this.clean_memory = function() {
|
| 87 |
+
tf.dispose(model.state[0]);
|
| 88 |
+
tf.dispose(model.state[1]);
|
| 89 |
+
};
|
| 90 |
+
|
| 91 |
+
this.loop = function() {
|
| 92 |
+
this.step();
|
| 93 |
+
if (this.pos >=28*28) {
|
| 94 |
+
setTimeout(function(){
|
| 95 |
+
model.clean_memory();
|
| 96 |
+
model.initialize_state();
|
| 97 |
+
canvas.plot_grid();
|
| 98 |
+
model.loop();
|
| 99 |
+
}, 3000);
|
| 100 |
+
} else {
|
| 101 |
+
canvas.plot_xyc(this.pos, 255);
|
| 102 |
+
setTimeout(function(){model.loop();}, 0);
|
| 103 |
+
}
|
| 104 |
+
};
|
| 105 |
+
|
| 106 |
+
this.load_model_weights = function() {
|
| 107 |
+
var req = new XMLHttpRequest();
|
| 108 |
+
req.open("GET", "weights.bin", true);
|
| 109 |
+
console.log('loading weights...');
|
| 110 |
+
req.responseType = "arraybuffer";
|
| 111 |
+
var this_ = this;
|
| 112 |
+
req.onload = function (event) {
|
| 113 |
+
var buff = req.response;
|
| 114 |
+
if (buff) {
|
| 115 |
+
var W = new Float32Array(buff);
|
| 116 |
+
for(var k in this_.weights_meta) {
|
| 117 |
+
info = this_.weights_meta[k];
|
| 118 |
+
offset = info[0];
|
| 119 |
+
shape = info[1];
|
| 120 |
+
this_.MODEL_WEIGHTS[k] = tf.tensor(W.subarray(offset[0], offset[1]), shape);
|
| 121 |
+
}
|
| 122 |
+
this_.is_model_ready = true;
|
| 123 |
+
} else {
|
| 124 |
+
alert('Error while loading weights...');
|
| 125 |
+
}
|
| 126 |
+
};
|
| 127 |
+
req.send(null);
|
| 128 |
+
};
|
| 129 |
+
|
| 130 |
+
this.load_when_ready = function() {
|
| 131 |
+
tf.ready().then( function() {
|
| 132 |
+
tf.enableProdMode();
|
| 133 |
+
console.log('tf is ready');
|
| 134 |
+
model.initialize_state()
|
| 135 |
+
model.load_model_weights();
|
| 136 |
+
console.log(model.hidden_size);
|
| 137 |
+
});
|
| 138 |
+
};
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
function MnistCanvas() {
|
| 143 |
+
var canvas = document.getElementById("mnist-canvas");
|
| 144 |
+
canvas.width = window.innerWidth;
|
| 145 |
+
canvas.height = window.innerHeight;
|
| 146 |
+
context=canvas.getContext('2d');
|
| 147 |
+
context.translate(canvas.width/2,canvas.height/2);
|
| 148 |
+
var scale = Math.floor(Math.min(canvas.width, canvas.height) / (28*2) ) * 28;
|
| 149 |
+
console.log(scale);
|
| 150 |
+
context.scale(scale, scale)
|
| 151 |
+
context.imageSmoothingEnabled = false;
|
| 152 |
+
|
| 153 |
+
this.clear = function() {
|
| 154 |
+
context.clearRect(-1, -1, 2., 2.);
|
| 155 |
+
context.fillStyle = "rgb(0, 0, 0)";
|
| 156 |
+
context.fillRect(-10, -10, 20, 20);
|
| 157 |
+
};
|
| 158 |
+
|
| 159 |
+
this.plot_grid = function() {
|
| 160 |
+
for (var i=0; i< 28*28; i++) this.plot_xyc(i, 0);
|
| 161 |
+
};
|
| 162 |
+
|
| 163 |
+
this.plot_xyc = function (pos, color) {
|
| 164 |
+
color = Math.max(20, color);
|
| 165 |
+
var step = 1. / 28;
|
| 166 |
+
var y = Math.floor(pos / 28 - 14) * step;
|
| 167 |
+
var x = (pos % 28 - 14) * step;
|
| 168 |
+
context.fillStyle = "rgb(0, " + color + ", 0)";
|
| 169 |
+
context.fillRect(x, y, step, step);
|
| 170 |
+
context.strokeStyle = "rgb(0, 0, 0)";
|
| 171 |
+
context.lineWidth = 0.008;
|
| 172 |
+
context.strokeRect(x, y, step, step);
|
| 173 |
+
};
|
| 174 |
+
|
| 175 |
+
this.loading_animation = function() {
|
| 176 |
+
var counter = 0;
|
| 177 |
+
var this_ = this;
|
| 178 |
+
this_.plot_grid();
|
| 179 |
+
|
| 180 |
+
var draw = function() {
|
| 181 |
+
if (model.is_model_ready) {
|
| 182 |
+
console.log('stopping animation.');
|
| 183 |
+
model.loop();
|
| 184 |
+
return;
|
| 185 |
+
}
|
| 186 |
+
if (counter >= 28*28) {
|
| 187 |
+
this_.plot_grid();
|
| 188 |
+
counter = 0;
|
| 189 |
+
}
|
| 190 |
+
this_.plot_xyc(counter, 255);
|
| 191 |
+
if (counter < 28*28-1) {
|
| 192 |
+
this_.plot_xyc(counter+1, 255);
|
| 193 |
+
}
|
| 194 |
+
counter = counter+1;
|
| 195 |
+
window.requestAnimationFrame(draw);
|
| 196 |
+
};
|
| 197 |
+
window.requestAnimationFrame(draw);
|
| 198 |
+
};
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
var model = null;
|
| 203 |
+
var canvas = null;
|
| 204 |
+
|
| 205 |
+
window.onload = function() {
|
| 206 |
+
setTimeout(function() {
|
| 207 |
+
model = new MnistRNN();
|
| 208 |
+
canvas = new MnistCanvas();
|
| 209 |
+
console.log("init...");
|
| 210 |
+
canvas.clear();
|
| 211 |
+
canvas.loading_animation();
|
| 212 |
+
model.load_when_ready();
|
| 213 |
+
}, 500);
|
| 214 |
+
};
|