File size: 6,253 Bytes
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import json
import time
from dotenv import load_dotenv
from jinja2 import Environment, StrictUndefined

from utils.src.utils import get_json_from_response, account_token, html_to_png
from utils.config_utils import load_poster_yaml_config

from camel.models import ModelFactory
from camel.agents import ChatAgent
from camel.configs import ChatGPTConfig
from camel.types import ModelPlatformType, ModelType

load_dotenv()

def gen_beamer_poster_direct(

    paper_text: str,

    poster_width_cm: float = 120,

    poster_height_cm: float = 90,

    beamer_theme: str = "default",

    output_dir: str = "output",

    model_name: str = "4o"

):
    """

    Generate Beamer poster directly from paper text using LLM.

    

    Args:

        paper_text: Extracted text from the paper

        poster_width_cm: Poster width in centimeters

        poster_height_cm: Poster height in centimeters  

        beamer_theme: Beamer theme name

        output_dir: Output directory

        model_name: Model name for generation

    """
    start_time = time.time()
    total_input_token, total_output_token = 0, 0
    
    # Load configuration
    config_path = "utils/prompt_templates/LLM_gen_Beamer.yaml"
    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    
    # Create model and agent
    actor_model = ModelFactory.create(
        model_platform=ModelPlatformType.OPENAI,
        model_type=ModelType.GPT_4O,
        model_config_dict=ChatGPTConfig().as_dict(),
    )
    
    actor_agent = ChatAgent(
        system_message=config['system_prompt'],
        model=actor_model,
        message_window_size=None
    )
    
    # Prepare template arguments
    jinja_args = {
        'document_markdown': paper_text,
        'poster_width_cm': poster_width_cm,
        'poster_height_cm': poster_height_cm,
        'beamer_theme': beamer_theme,
        'aspect_ratio': "169",
        'title_color': "[47, 85, 151]",
        'text_color': "[0, 0, 0]"
    }
    
    # Render template
    jinja_env = Environment(undefined=StrictUndefined)
    template = jinja_env.from_string(config["template"])
    prompt = template.render(**jinja_args)
    
    # Generate Beamer code
    actor_agent.reset()
    response = actor_agent.step(prompt)
    input_token, output_token = account_token(response)
    total_input_token += input_token
    total_output_token += output_token
    
    # Extract LaTeX code
    result_json = get_json_from_response(response.msgs[0].content)
    latex_str = result_json['LATEX']
    
    # Save LaTeX file
    os.makedirs(output_dir, exist_ok=True)
    tex_path = os.path.join(output_dir, 'poster.tex')
    with open(tex_path, 'w', encoding='utf-8') as f:
        f.write(latex_str)
    
    # Compile to PDF
    print("Compiling LaTeX to PDF...")
    success = compile_beamer_to_pdf(tex_path, output_dir)
    
    if success:
        print(f"βœ… Beamer poster generated successfully: {tex_path}")
    else:
        print("❌ Failed to compile LaTeX to PDF")
    
    # Save log
    end_time = time.time()
    elapsed_time = end_time - start_time
    
    log = {
        'input_token': total_input_token,
        'output_token': total_output_token,
        'time_taken': elapsed_time,
        'output_format': 'beamer',
        'beamer_theme': beamer_theme
    }
    
    with open(os.path.join(output_dir, 'log.json'), 'w') as f:
        json.dump(log, f, indent=4)
    
    return tex_path, success

def compile_beamer_to_pdf(tex_path: str, output_dir: str = "."):
    """

    Compile Beamer .tex file to PDF using pdflatex.

    

    Args:

        tex_path: Path to .tex file

        output_dir: Output directory for PDF

    """
    import subprocess
    
    try:
        # Run pdflatex twice for proper cross-references
        result1 = subprocess.run(
            ['pdflatex', '-output-directory', output_dir, tex_path],
            capture_output=True,
            text=True,
            timeout=60
        )
        
        result2 = subprocess.run(
            ['pdflatex', '-output-directory', output_dir, tex_path],
            capture_output=True,
            text=True,
            timeout=60
        )
        
        if result1.returncode == 0 and result2.returncode == 0:
            print(f"Successfully compiled {tex_path} to PDF")
            return True
        else:
            print(f"Error compiling {tex_path}:")
            print(result1.stderr)
            print(result2.stderr)
            return False
            
    except subprocess.TimeoutExpired:
        print(f"Timeout while compiling {tex_path}")
        return False
    except Exception as e:
        print(f"Error compiling {tex_path}: {e}")
        return False

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description='Generate Beamer poster directly from paper')
    parser.add_argument('--paper_path', required=True, help='Path to paper PDF')
    parser.add_argument('--output_dir', default='beamer_output', help='Output directory')
    parser.add_argument('--poster_width_cm', type=float, default=120, help='Poster width in cm')
    parser.add_argument('--poster_height_cm', type=float, default=90, help='Poster height in cm')
    parser.add_argument('--beamer_theme', default='default', help='Beamer theme')
    parser.add_argument('--model_name', default='4o', help='Model name')
    
    args = parser.parse_args()
    
    # Extract text from paper (you'll need to implement this)
    # For now, using placeholder text
    paper_text = "This is placeholder text. In practice, you would extract text from the PDF."
    
    # Generate Beamer poster
    tex_path, success = gen_beamer_poster_direct(
        paper_text=paper_text,
        poster_width_cm=args.poster_width_cm,
        poster_height_cm=args.poster_height_cm,
        beamer_theme=args.beamer_theme,
        output_dir=args.output_dir,
        model_name=args.model_name
    )
    
    if success:
        print(f"Beamer poster generated at: {tex_path}")
    else:
        print("Failed to generate Beamer poster")