File size: 43,438 Bytes
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
import random
import string
import yaml
import PIL
import tempfile
import io
from camel.models import ModelFactory
from math import ceil
from openai import OpenAI
from camel.messages import BaseMessage
from utils.src.model_utils import parse_pdf
from urllib.parse import unquote
from copy import deepcopy
from transformers import AutoTokenizer, AutoModelForCausalLM
from pytorch_fid.fid_score import compute_statistics_of_path
import pytorch_fid.fid_score as fid
from PIL import Image
from httpx import Timeout
from docling.document_converter import DocumentConverter, PdfFormatOption
import re
import shutil
import pytesseract
from utils.wei_utils import account_token
from camel.types import ModelPlatformType, ModelType
from marker.models import create_model_dict
from camel.configs import ChatGPTConfig
from camel.agents import ChatAgent
from jinja2 import Environment, StrictUndefined
from utils.src.utils import get_json_from_response
from pathlib import Path
from docling_core.types.doc import ImageRefMode, PictureItem, TableItem
from collections import defaultdict

from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption

import math
import base64
import requests
from io import BytesIO
from PIL import Image

import torch
import json
import os
import pickle as pkl
import numpy as np
from transformers import AltCLIPProcessor, AltCLIPModel

def pil_to_data_uri(img: Image.Image, fmt: str = "PNG") -> str:
    """
    Convert a PIL.Image to a base-64 data URI suitable for
    the OpenAI/vLLM 'image_url' block.
    fmt = 'PNG' (lossless) or 'JPEG' (smaller, 0-100 quality).
    """
    buf = io.BytesIO()
    if fmt.upper() == "JPEG":
        img.save(buf, format="JPEG", quality=90)
        mime = "image/jpeg"
    else:
        img.save(buf, format="PNG")
        mime = "image/png"
    b64 = base64.b64encode(buf.getvalue()).decode()
    return f"data:{mime};base64,{b64}"

def md_to_blocks(
    md: str,
    base_dir=''
):
    blocks, pos = [], 0
    pat = re.compile(r'!\[.*?\]\((.*?)\)', re.DOTALL)

    for m in pat.finditer(md):
        # --- text before this image ---------------------------------------
        txt = md[pos : m.start()].strip()
        if txt:
            blocks.append({"type": "text", "text": txt})

        # --- the image itself ---------------------------------------------
        img_path = unquote(m.group(1))
        img_path = os.path.join(base_dir, img_path)

        blocks.append({"type": "image_url", "image_url": {"url": pil_to_data_uri(Image.open(img_path), fmt="PNG")}})
        pos = m.end()

    # --- any trailing text -------------------------------------------------
    tail = md[pos:].strip()
    if tail:
        blocks.append({"type": "text", "text": tail})

    return blocks

def compute_vlm_ppl(content):
    VLLM_BASE_URL = "http://localhost:7000/v1"
    MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"

    client = OpenAI(
        api_key="EMPTY",            # vLLM ignores auth
        base_url=VLLM_BASE_URL,
        timeout=Timeout(5000)
    )

    resp = client.chat.completions.create(
        model=MODEL_ID,
        messages=[{
            "role": "user",
            "content": content,
        }],
        temperature=0.0,
        max_tokens=1, 
        logprobs=0,
        extra_body={
            "prompt_logprobs": 1,
            "echo": True 
        }
    )

    lp_list = resp.to_dict()["prompt_logprobs"]   # list[dict]
    total_lp = 0.0
    n_text   = 0

    for token_entry in lp_list:
        if not token_entry:
            continue
        # find the sub-entry with rank==1 (the real token)
        token_info = next(v for v in token_entry.values() if v["rank"] == 1)
        tok, lp = token_info["decoded_token"], token_info["logprob"]

        # skip image sentinels / padding
        if re.fullmatch(r"<\|?image[^>]*\|?>", tok):
            continue

        total_lp += lp
        n_text   += 1

    return math.exp(-total_lp / n_text)

def compute_interleaved_ppl(paper_name, poster_method):
    base_dir = f'eval_poster_markdown/{paper_name}/{poster_method}'
    with open(os.path.join(base_dir, f'{paper_name}-with-image-refs.md'), 'r') as f:
        md = f.read()
    parts = md_to_blocks(md, base_dir)
    while True:
        try:
            return compute_vlm_ppl(parts)
        except:
            parts = parts[:-1]
            continue


def get_visual_ppl(image, text):

    img_uri = pil_to_data_uri(image, fmt="PNG")
    content = [
        {"type": "text",      "text": text},
        {"type": "image_url", "image_url": {"url": img_uri}},
    ]

    return compute_vlm_ppl(content)

def estimate_visual_tokens(
    images,
    *,
    resized_height: int | None = None,
    resized_width: int | None = None,
    min_pixels: int | None = None,
    max_pixels: int | None = None,
):
    """Return per‑image *visual‑token* counts for **Qwen‑2.5‑VL**.

    Token count = ⌈H/28⌉ × ⌈W/28⌉ after the model’s resizing rules. The helper
    mirrors those rules so your offline estimate aligns with server billing.
    """
    counts = []

    for img in images:
        h, w = img.height, img.width
        # manual resize overrides (rarely used)
        if resized_height and resized_width:
            h, w = resized_height, resized_width
        # area‑based resize to respect min/max tokens
        if min_pixels and h * w < min_pixels:
            scale = (min_pixels / (h * w)) ** 0.5
            h, w = int(h * scale), int(w * scale)
        if max_pixels and h * w > max_pixels:
            scale = (max_pixels / (h * w)) ** 0.5
            h, w = int(h * scale), int(w * scale)
        # round each side to multiple of 28
        h = ceil(h / 28) * 28
        w = ceil(w / 28) * 28
        counts.append((h // 28) * (w // 28))

    return counts

def image_memory_size(img: Image.Image, fmt="JPEG"):
    buf = BytesIO()
    img.save(buf, format=fmt)
    return buf.tell()

def truncate_images_to_fit(
    images,
    *,
    max_ctx: int,
    **resize_kwargs,
):
    """Drop **later** images until total visual tokens ≤ *max_ctx*.

    Chronology‑preserving version: keeps the earliest images intact and
    trims the tail when necessary.
    """

    tokens = estimate_visual_tokens(images, **resize_kwargs)
    max_size = 45 * 1024 * 1024  # 45 MB
    total_size = 0
    keep = []
    total = 0
    for img, n_tok in zip(images, tokens):  # iterate in original order
        if total + n_tok > max_ctx:
            break  # stop adding once budget exceeded – we drop the rest
        img_size = image_memory_size(img)
        if total_size + img_size > max_size:
            break
        keep.append(img)
        total += n_tok
    return keep


def compute_poster_image_ppl(images):
    max_ctx = 128_000  # max visual tokens for Qwen2.5-VL
    truncated_images = truncate_images_to_fit(images, max_ctx=max_ctx)
    img_uris = [pil_to_data_uri(image, fmt="PNG") for image in truncated_images]
    content = [
        {"type": "image_url", "image_url": {"url": img_uri}} for img_uri in img_uris
    ]

    return compute_vlm_ppl(content)


def compute_clip_embeddings(folder, model, processor, device):
    """
    Loads each image in `folder`, encodes it with the CLIP model,
    and returns a list (or array) of embeddings, shape (N, D).
    """
    model.eval()
    embeddings = []

    # Gather all image files
    image_files = [
        f for f in os.listdir(folder)
        if f.lower().endswith(('.png', '.jpg', '.jpeg'))
    ]

    if not image_files:
        print(f"No valid images found in {folder}")
        return np.array([])

    for filename in image_files:
        img_path = os.path.join(folder, filename)
        image = Image.open(img_path).convert('RGB')

        # Preprocess for CLIP
        inputs = processor(images=image, return_tensors="pt").to(device)

        # Encode and get the image embeddings
        with torch.no_grad():
            clip_emb = model.get_image_features(**inputs)
            # Move to CPU and convert to NumPy
            clip_emb = clip_emb[0].cpu().numpy()
            embeddings.append(clip_emb)

    return np.array(embeddings)  # shape: (N, D)

def compute_clip_embedding(input_data, model, processor, device='cuda', input_type=None):
    """
    Compute a CLIP embedding for either an image or text.

    Parameters
    ----------
    input_data : str or PIL.Image.Image
        - If a string: treated as a file path to an image (if file exists) or as a text prompt.
        - If a PIL.Image.Image: treated as an image.
    model : CLIPModel
        The loaded CLIP model (e.g., from Hugging Face).
    processor : CLIPProcessor
        The corresponding CLIP processor for tokenization/preprocessing.
    device : torch.device
        The device to run inference on.
    input_type : {'image', 'text', None}, optional
        Force the mode; if `None` (default) the function will try to infer from `input_data`.

    Returns
    -------
    np.ndarray
        A 1D NumPy array of length D (the CLIP embedding dimension).
    """
    model.eval()

    # Decide mode
    if input_type == "image":
        mode = "image"
    elif input_type == "text":
        mode = "text"
    else:
        # auto-detect
        if isinstance(input_data, Image.Image):
            mode = "image"
        elif isinstance(input_data, str) and os.path.isfile(input_data):
            mode = "image"
        else:
            mode = "text"

    # Preprocess + encode
    with torch.no_grad():
        if mode == "image":
            if isinstance(input_data, str):
                image = Image.open(input_data).convert("RGB")
            else:
                image = input_data.convert("RGB")
            inputs = processor(images=image, return_tensors="pt").to(device)
            features = model.get_image_features(**inputs)

        else:  # text mode
            # CLIP expects a list of strings
            texts = [input_data] if isinstance(input_data, str) else list(input_data)
            inputs = processor(
                text=texts, 
                return_tensors="pt", 
                padding=True,
                truncation=True,
                max_length=processor.tokenizer.model_max_length,
            ).to(device)
            features = model.get_text_features(**inputs)

        # extract, move to CPU, convert to numpy
        emb = features[0].cpu().numpy()

    return emb

def compute_average_l2_distance(emb1, emb2):
    """
    Computes the average L2 distance across all pairs in emb1 x emb2.
    - emb1 shape: (N1, D)
    - emb2 shape: (N2, D)
    Returns a single float: mean of all pairwise distances.
    """
    distances = []
    for e1 in emb1:
        for e2 in emb2:
            dist = np.linalg.norm(e1 - e2)  # L2 distance
            distances.append(dist)
    return np.mean(distances) if distances else float('nan')

def compute_cosine_similarity(e1, e2):
    """
    Computes the cosine similarity between two vectors.
    - e1 shape: (D,)
    - e2 shape: (D,)
    Returns a single float: cosine similarity.
    """
    dot = np.dot(e1, e2)
    norm_e1 = np.linalg.norm(e1)
    norm_e2 = np.linalg.norm(e2)
    return dot / (norm_e1 * norm_e2 + 1e-8)  # avoid division by zero

def compute_average_cosine_similarity(emb1, emb2):
    """
    Computes the average cosine similarity across all pairs in emb1 x emb2.
    - emb1 shape: (N1, D)
    - emb2 shape: (N2, D)
    Returns a single float: mean of all pairwise similarities.
    """
    similarities = []
    for e1 in emb1:
        for e2 in emb2:
            # Cosine similarity = (e1 · e2) / (||e1|| * ||e2||)
            dot = np.dot(e1, e2)
            norm_e1 = np.linalg.norm(e1)
            norm_e2 = np.linalg.norm(e2)
            cos_sim = dot / (norm_e1 * norm_e2 + 1e-8)
            similarities.append(cos_sim)
    return np.mean(similarities) if similarities else float('nan')

def compare_folders_with_clip(folder1, folder2):
    """
    Loads a CLIP model from Hugging Face,
    gets embeddings for each folder,
    and computes both average L2 distance and average cosine similarity.
    """
    device = "cuda" if torch.cuda.is_available() else "cpu"

    model_name="openai/clip-vit-base-patch32"
    model_name = "BAAI/AltCLIP"
    model = AltCLIPModel.from_pretrained(model_name).to('cuda')
    processor = AltCLIPProcessor.from_pretrained(model_name)

    # Compute embeddings
    emb1 = compute_clip_embeddings(folder1, model, processor, device)
    emb2 = compute_clip_embeddings(folder2, model, processor, device)

    if emb1.size == 0 or emb2.size == 0:
        print("One of the folders had no valid images. Comparison not possible.")
        return None, None

    # Average L2 Distance
    avg_l2 = compute_average_l2_distance(emb1, emb2)

    # Average Cosine Similarity
    avg_cos_sim = compute_average_cosine_similarity(emb1, emb2)

    return avg_l2, avg_cos_sim

def convert_folder_to_grayscale(input_folder, output_folder):
    os.makedirs(output_folder, exist_ok=True)
    for filename in os.listdir(input_folder):
        if filename.lower().endswith(('.jpg', '.jpeg', '.png')):
            input_path = os.path.join(input_folder, filename)
            output_path = os.path.join(output_folder, filename)

            img = Image.open(input_path).convert('L').convert('RGB')  # grayscale + 3 channels
            img.save(output_path)

def compute_fid_with_grayscale(reference_poster_folder, generated_poster_img_folder, clip=False):
    # Step 1: Create grayscale versions in tmp/
    tmp_ref = 'tmp/ref_gray'
    tmp_gen = 'tmp/gen_gray'

    if os.path.exists('tmp/ref_gray'):
        shutil.rmtree('tmp/ref_gray')

    if os.path.exists('tmp/gen_gray'):
        shutil.rmtree('tmp/gen_gray')
    os.makedirs(tmp_ref)
    os.makedirs(tmp_gen)

    convert_folder_to_grayscale(reference_poster_folder, tmp_ref)
    convert_folder_to_grayscale(generated_poster_img_folder, tmp_gen)

    if clip:
        return compare_folders_with_clip(tmp_ref, tmp_gen)

    # Step 2: Compute FID
    model = fid.InceptionV3([fid.InceptionV3.BLOCK_INDEX_BY_DIM[2048]]).to('cuda')
    m1, s1 = compute_statistics_of_path(tmp_ref, model, 1, 2048, 'cuda')
    m2, s2 = compute_statistics_of_path(tmp_gen, model, 1, 2048, 'cuda')
    fid_score = fid.calculate_frechet_distance(m1, s1, m2, s2)

    return fid_score

def compute_fid(reference_poster_folder, generated_poster_img_folder, clip=False):
    if clip:
        return compare_folders_with_clip(reference_poster_folder, generated_poster_img_folder)
    model = fid.InceptionV3([fid.InceptionV3.BLOCK_INDEX_BY_DIM[2048]]).to('cuda')

    m1, s1 = compute_statistics_of_path(reference_poster_folder, model, 1, 2048, 'cuda')
    m2, s2 = compute_statistics_of_path(generated_poster_img_folder, model, 1, 2048, 'cuda')

    fid_score = fid.calculate_frechet_distance(
        m1, s1, m2, s2
    )

    return fid_score


def get_poster_text(poster_path, check_fail=True):
    markdown_clean_pattern = re.compile(r"<!--[\s\S]*?-->")
    converter = DocumentConverter()
    raw_result = converter.convert(poster_path)

    raw_markdown = raw_result.document.export_to_markdown()
    text_content = markdown_clean_pattern.sub("", raw_markdown)
    if len(text_content) < 500 and check_fail:
        print('\nParsing with docling failed, using marker instead\n')
        parser_model = create_model_dict(device='cuda', dtype=torch.float16)
        text_content, rendered = parse_pdf(poster_path, model_lst=parser_model, save_file=False)
    return text_content

def qwen2_vl_ppl(
    image: Image.Image,
    text: str,
    *,
    vllm_url: str = "http://localhost:8000/v1/chat/completions",
    model: str   = "Qwen/Qwen2-VL-7B",     # whatever name you passed to vLLM
) -> float:
    """
    Compute PPL(text | image) with a Qwen2-VL-7B model served by vLLM.

    Parameters
    ----------
    image : PIL.Image.Image
        Input image.
    text : str
        Prompt text that follows the image.
    vllm_url : str, default "http://localhost:8000/v1/chat/completions"
        The full URL of the vLLM chat endpoint.
    model : str, default "Qwen2-VL-7B"
        Model name as registered when you launched vLLM.

    Returns
    -------
    float
        Per-token perplexity of `text` conditioned on `image`.
    """

    # 1) Encode the image as base64‑PNG
    buf = BytesIO()
    image.save(buf, format="PNG")
    img_b64 = base64.b64encode(buf.getvalue()).decode()

    # 2) Build a multimodal chat message: image first, then text
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {"url": f"data:image/png;base64,{img_b64}"}
                },
                {
                    "type": "text",
                    "text": text
                }
            ],
        }
    ]

    # 3) Ask vLLM to echo the prompt and give log‑probs
    payload = {
        "model":       model,
        "messages":    messages,
        "temperature": 0.0,
        "max_tokens":  0,    # no generation – just evaluate prompt
        "echo":        True,
        "logprobs":    1
    }

    resp = requests.post(vllm_url, json=payload, timeout=60)
    resp.raise_for_status()
    data = resp.json()

    # 4) Extract prompt‑token log‑probs
    token_logps = data["choices"][0]["logprobs"]["token_logprobs"]

    # Ignore special tokens & image placeholders (returned as None)
    valid = [lp for lp in token_logps if lp is not None]
    if not valid:
        raise ValueError("No valid text tokens found in logprobs")

    # 5) Perplexity = exp( − average logp )
    return math.exp(-sum(valid) / len(valid))

def get_ppl(
    text: str,
    model_name: str = "meta-llama/Llama-2-7b-hf",
    stride: int = 512,
) -> float:
    """Compute perplexity for arbitrarily long *text* using a sliding‑window approach.

    Parameters
    ----------
    text : str
        The input string (any length).
    model_name : str, optional
        HF Hub id of the model to use, by default "meta-llama/Llama-2-7b-hf".
    stride : int, optional
        Overlap between successive windows. 512 tends to work well for most
        Transformer LMs with a 2 k context. Increase it for higher accuracy at
        the cost of more compute.

    Returns
    -------
    float
        Per‑token perplexity under the given model.
    """
    # Load tokenizer / model once per call (cache makes subsequent calls cheap)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="auto",  # place on GPU if available
    )
    model.eval()

    # Encode the whole string in one shot
    encodings = tokenizer(text, return_tensors="pt")
    input_ids = encodings.input_ids[0]

    # Model context length (e.g. 2048 for Llama‑2)
    max_len = model.config.max_position_embeddings

    # --- Short input: fits in a single window --------------------------------
    if input_ids.size(0) <= max_len:
        with torch.no_grad():
            out = model(input_ids.unsqueeze(0).to(model.device), labels=input_ids.unsqueeze(0).to(model.device))
        return torch.exp(out.loss).item()

    # --- Long input: sliding window with overlap -----------------------------
    nlls = []  # negative‑log‑likelihoods (already multiplied by #tokens scored)
    for i in range(0, input_ids.size(0), stride):
        begin_loc = max(i + stride - max_len, 0)
        end_loc = min(i + stride, input_ids.size(0))
        trg_len = end_loc - i  # tokens we actually score in this window

        ids_chunk = input_ids[begin_loc:end_loc]
        labels = ids_chunk.clone()
        labels[:-trg_len] = -100  # mask out purely‑context tokens

        with torch.no_grad():
            out = model(ids_chunk.unsqueeze(0).to(model.device), labels=labels.unsqueeze(0).to(model.device))
            nll = out.loss * trg_len  # make additive so we can sum across windows
        nlls.append(nll)

        if end_loc == input_ids.size(0):
            break

    ppl = torch.exp(torch.stack(nlls).sum() / input_ids.size(0))
    return ppl.item()

def extract_text_from_image(image_path):
    """
    Open an image file and use Tesseract OCR to extract text.
    :param image_path: Path to the image file
    :return: Extracted text as a string
    """
    image = Image.open(image_path)
    text = pytesseract.image_to_string(image)
    return text

import tiktoken

def count_tokens(text: str, model: str = "gpt-4o") -> int:
    """
    Count the number of tokens in `text` according to OpenAI's tokenizer.
    
    :param text: The input string you want to measure.
    :param model: Which model’s encoding to mimic (defaults to “gpt-4o”).
                  Common choices: "gpt-3.5-turbo", "gpt-4o", "gpt-4o-mini".
    :return: The number of tokens.
    """
    # Grab the right encoder for the model; falls back to the nearest base if needed
    try:
        enc = tiktoken.encoding_for_model(model)
    except KeyError:
        # All chat models use the cl100k_base encoding
        enc = tiktoken.get_encoding("cl100k_base")
    
    return len(enc.encode(text))

def count_words(text):
    """
    Count the number of words in a given text string.
    :param text: Input text
    :return: Number of words found
    """
    # Use a regex to find word-like sequences
    words = re.findall(r"\w+", text)
    return len(words)


def count_words_in_image(image_path):
    """
    Extract text from an image and count its words.
    :param image_path: Path to the image file
    :return: Word count (int)
    """
    text = extract_text_from_image(image_path)
    return count_words(text)

def count_tokens_in_image(image_path, model="gpt-4o"):
    """
    Extract text from an image and count its tokens.
    :param image_path: Path to the image file
    :param model: Which model’s encoding to mimic (defaults to “gpt-4o”).
                  Common choices: "gpt-3.5-turbo", "gpt-4o", "gpt-4o-mini".
    :return: Token count (int)
    """
    text = extract_text_from_image(image_path)
    return count_tokens(text, model=model)

def png_to_optimized_jpeg(img: Image.Image,
                          max_size=(2048, 2048),
                          quality=80) -> BytesIO:
    """
    Take a PNG PIL Image, downsample it to fit within max_size (preserving aspect
    ratio), then JPEG-compress it at the given quality into a BytesIO buffer.
    
    Args:
      img:     PIL.Image opened from your .png
      max_size: (width, height) ceiling for downsampling
      quality: JPEG quality 1–95 (higher = better quality / larger file)
    
    Returns:
      BytesIO containing the JPEG bytes.
    """
    # 1) Downsample in place (preserves aspect ratio)
    img_copy = img.copy()
    img_copy.thumbnail(max_size, resample=Image.LANCZOS)
    
    # 2) Convert to RGB (drop alpha) and save with compression
    rgb = img_copy.convert("RGB")
    buf = BytesIO()
    rgb.save(
        buf,
        format="JPEG",
        quality=quality,        # try 80–90 for minimal artifacts
        optimize=True,          # runs an extra pass to squeeze out redundant data
        progressive=True        # allows incremental render in browsers/viewers
    )
    buf.seek(0)
    return buf

def get_answers_and_remove_answers(questions):
    question_only, answers, aspects = {}, {}, {}
    for key, val in questions.items():
        question_only[key] = {
            'question': val['question'],
            'options': val['options']
        }
        answers[key] = val['answer']
        aspects[key] = val['aspect']
    return question_only, answers, aspects

def open_folder_images(
    folder_path,
    paper_name,
    return_path=False,
    format='png',
    max_size=(700, 700),
    quality=80
):
    """
    Opens all PNG images in folder_path named '{paper_name}-{index}.png',
    starting from index=1 up to the first missing, and returns them
    either as file-paths (if return_path=True) or as PIL.Image objects.
    
    If img_format!='png', each PNG is downsampled to fit within max_size
    (preserving aspect ratio), converted to RGB, and saved into an
    in-memory JPEG with the given quality, optimize and progressive flags.
    """
    images = []
    index = 1

    while True:
        png_name = f"{paper_name}-{index}.png"
        path = os.path.join(folder_path, png_name)
        if not os.path.isfile(path):
            break

        if format == 'png':
            if return_path:
                images.append(path)
            else:
                images.append(Image.open(path))
        else:
            # 1) Load and downsample
            with Image.open(path) as im:
                thumb = im.copy()
                thumb.thumbnail(max_size, resample=Image.LANCZOS)

                # 2) Convert & compress to JPEG in-memory
                rgb = thumb.convert("RGB")
                buf = BytesIO()
                rgb.save(
                    buf,
                    format="JPEG",
                    quality=quality,        # e.g. 80–90
                    optimize=True,          # extra pass to strip redundant data
                    progressive=True        # for incremental rendering
                )
                buf.seek(0)

                if return_path:
                    # we return a tuple of (fake-jpg-filename, buffer)
                    jpg_name = png_name.rsplit('.', 1)[0] + '.jpg'
                    images.append((jpg_name, buf))
                else:
                    images.append(Image.open(buf))

        index += 1

    return images

def ensure_under_limit_pil(img, max_bytes: int = 10 * 1024 * 1024) -> Image.Image:
    # Ensure RGB mode for JPEG compatibility
    if img.mode in ("RGBA", "P"):
        img = img.convert("RGB")

    # Try saving at decreasing qualities until under the limit
    for quality in (90, 80, 70, 60, 50):
        buf = io.BytesIO()
        img.save(buf, format="JPEG", quality=quality)
        new_raw = buf.getvalue()
        if len(new_raw) <= max_bytes:
            return Image.open(io.BytesIO(new_raw))

    # Fallback: resize by half and save at low quality
    w, h = img.size
    img_resized = img.resize((w // 2, h // 2), Image.LANCZOS)
    buf = io.BytesIO()
    img_resized.save(buf, format="JPEG", quality=50)
    new_raw = buf.getvalue()
    if len(new_raw) > max_bytes:
        raise RuntimeError("Could not reduce image under size limit")

    return Image.open(io.BytesIO(new_raw))

def eval_qa_get_answer(poster_input, questions, answers, aspects, input_type, agent_config):
    agent_name = f'answer_question_from_{input_type}'
    with open(f"utils/prompt_templates/{agent_name}.yaml", "r") as f:
        config = yaml.safe_load(f)

    if agent_config['model_platform'].is_vllm:
        actor_model = ModelFactory.create(
            model_platform=agent_config['model_platform'],
            model_type=agent_config['model_type'],
            model_config_dict=agent_config['model_config'],
            url=agent_config['url'],
        )
    else:
        actor_model = ModelFactory.create(
            model_platform=agent_config['model_platform'],
            model_type=agent_config['model_type'],
            model_config_dict=agent_config['model_config'],
        )

    actor_sys_msg = config['system_prompt']

    actor_agent = ChatAgent(
        system_message=actor_sys_msg,
        model=actor_model,
        message_window_size=None,
    )

    actor_agent.reset()

    jinja_env = Environment(undefined=StrictUndefined)

    template = jinja_env.from_string(config["template"])

    if input_type == 'text':
        prompt = template.render(**{
            'questions': questions,
            'poster_text': poster_input,
        })
        response = actor_agent.step(prompt)
        agent_answers = get_json_from_response(response.msgs[0].content)
    elif input_type == 'image':
        if 'max_images' in agent_config:
            max_images = agent_config['max_images']
        else:
            max_images = len(poster_input)
        prompt = template.render(**{
            'questions': questions,
        })
        msg = BaseMessage.make_user_message(
            role_name="User",
            content=prompt,
            image_list=poster_input[:max_images],
        )
        response = actor_agent.step(msg)
        agent_answers = get_json_from_response(response.msgs[0].content)

    input_token, output_token = account_token(response)

    accuracy, aspect_accuracy = compute_accuracy(agent_answers, answers, aspects)

    return accuracy, aspect_accuracy, agent_answers, input_token, output_token
    

def compute_accuracy(predicted, ground_truth, aspects):
    """
    Parameters
    ----------
    predicted : dict
        {question: {'answer': <letter>, 'reference': ...}, ...}
    ground_truth : dict
        {question: '<letter>. full answer', ...}
    aspects : dict
        {question: '<aspect name>', ...}

    Returns
    -------
    overall_accuracy : float
    aspect_summary : dict
        {
          '<aspect name>': {
              'total':    <int>,   # questions in this aspect
              'correct':  <int>,   # correctly answered questions
              'accuracy': <float>  # correct / total (0–1)
          },
          ...
        }
    """
    correct_global = 0
    total_global   = len(ground_truth)

    total_by_aspect   = defaultdict(int)
    correct_by_aspect = defaultdict(int)

    for q, pred_info in predicted.items():
        letter_pred = pred_info['answer']
        ref = pred_info.get('reference', 'NA')

        # Count this question toward its aspect, even if NA or missing gt
        aspect = aspects.get(q, 'Unknown')
        total_by_aspect[aspect] += 1

        if letter_pred == 'NA' or ref == 'NA':
            continue  # automatically wrong

        if q in ground_truth:
            letter_gt = ground_truth[q].split('.')[0].strip()

            if len(letter_pred) > 0:
                letter_pred = letter_pred[0].upper()
            if letter_pred == letter_gt:
                correct_global += 1
                correct_by_aspect[aspect] += 1

    overall_accuracy = correct_global / total_global if total_global else 0.0

    # Build the per-aspect dictionary
    aspect_summary = {}
    for aspect, total in total_by_aspect.items():
        correct = correct_by_aspect[aspect]
        acc     = correct / total if total else 0.0
        aspect_summary[aspect] = {
            'total':   total,
            'correct': correct,
            'accuracy': acc
        }

    return overall_accuracy, aspect_summary

def shuffle_question_options(question_data):
    """
    Shuffle the order of the options for each question in the question_data.
    Also updates the "answer" field so that it uses the new letter corresponding
    to the correct option.
    
    Parameters:
        question_data (dict): A dictionary where keys are question identifiers (e.g., "Question 1")
                              and values are dictionaries containing at least the keys "options" (a list
                              of option strings) and "answer" (a string matching one of the options).
    
    Returns:
        dict: A new dictionary with the same structure as question_data but with options shuffled
              and answers updated.
    """
    # Make a deep copy so we do not modify the original data
    new_data = deepcopy(question_data)
    
    # Loop over each question
    for q_key, q_content in new_data.items():
        original_options = q_content.get("options", [])
        original_answer = q_content.get("answer", "")
        
        # Extract the text portion of the original answer.
        # We assume that each option (and the answer) has the format "X. <option text>"
        if ". " in original_answer:
            orig_letter, orig_text = original_answer.split(". ", 1)
        else:
            # If format not as expected, use the whole answer string
            orig_text = original_answer
        
        # Remove the letter prefixes from each option to obtain a list of option texts.
        option_texts = []
        for opt in original_options:
            if ". " in opt:
                _, text = opt.split(". ", 1)
            else:
                text = opt
            option_texts.append(text)
        
        # Shuffle the list of option texts
        random.shuffle(option_texts)
        
        # Reassign new letter labels (A, B, C, etc.) to the shuffled options.
        new_options = []
        correct_answer_new = None
        letters = list(string.ascii_uppercase)
        for idx, text in enumerate(option_texts):
            new_opt = f"{letters[idx]}. {text}"
            new_options.append(new_opt)
            # When the option's text matches the original answer text, update the answer field.
            if text == orig_text:
                correct_answer_new = new_opt
        
        # Fallback in case no match is found (should not happen if data is consistent)
        if correct_answer_new is None:
            correct_answer_new = original_answer
        
        # Update the question entry with the new options and answer.
        q_content["options"] = new_options
        q_content["answer"] = correct_answer_new

    return new_data

def png_to_pdf(input_path: str, output_path: str) -> None:
    """
    Convert a PNG image to a PDF file.

    Args:
        input_path: Path to the source .png file.
        output_path: Path where the resulting .pdf will be saved.
    """
    with Image.open(input_path) as img:
        # Convert image to RGB if it has an alpha channel
        if img.mode in ("RGBA", "LA") or (img.mode == "P" and "transparency" in img.info):
            background = Image.new("RGB", img.size, (255, 255, 255))
            if img.mode != "RGBA":
                img = img.convert("RGBA")
            background.paste(img, mask=img.split()[-1])  # use alpha channel as mask
            img = background
        else:
            img = img.convert("RGB")

        img.save(output_path, "PDF", resolution=200.0)

def extract_images_and_sections(md):
    parts = re.split(r'(## [^\n]+)', md)
    records = []
    for i in range(1, len(parts), 2):
        header = parts[i].strip()
        content = parts[i+1]
        # Find all image paths
        images = re.findall(r'!\[.*?\]\((.*?)\)', content)
        if images:
            # Remove lines that are image markdown
            lines = content.splitlines()
            cleaned = [
                line for line in lines
                if not re.match(r'!\[.*?\]\(.*?\)', line.strip())
            ]
            section_text = "\n".join(cleaned).strip()
            for img in images:
                records.append({
                    'section': header,
                    'image_path': unquote(img),
                    'section_text': section_text
                })

    return records

def gen_eval_markdown(paper_name, poster_method, poster_path, figure_count_only=False):
    model_name="openai/clip-vit-base-patch32"
    model_name = "BAAI/AltCLIP"
    model = AltCLIPModel.from_pretrained(model_name).to('cuda')
    processor = AltCLIPProcessor.from_pretrained(model_name)

    # create a uniquely‐named file in your system temp dir (or specify dir="tmp")
    with tempfile.NamedTemporaryFile(suffix=".pdf", prefix="poster_", dir="tmp", delete=False) as tf:
        unique_pdf = tf.name

    if poster_method != 'paper':
        # convert into that file
        png_to_pdf(poster_path, unique_pdf)
        poster_path = unique_pdf
    IMAGE_RESOLUTION_SCALE = 5.0
    agent_name = f'image_captioner'
    with open(f"utils/prompt_templates/{agent_name}.yaml", "r") as f:
        config = yaml.safe_load(f)
    actor_model = ModelFactory.create(
        model_platform=ModelPlatformType.OPENAI,
        model_type=ModelType.GPT_4O,
        model_config_dict=ChatGPTConfig().as_dict(), # [Optional] the config for model
    )

    actor_sys_msg = config['system_prompt']

    actor_agent = ChatAgent(
        system_message=actor_sys_msg,
        model=actor_model,
        message_window_size=None,
    )
    jinja_env = Environment(undefined=StrictUndefined)

    template = jinja_env.from_string(config["template"])
    prompt = template.render()

    raw_source = poster_path
    converter = DocumentConverter()
    raw_result = converter.convert(raw_source)
    raw_markdown = raw_result.document.export_to_markdown()

    output_dir = Path(f'eval_poster_markdown/{paper_name}/{poster_method}')
    output_dir.mkdir(parents=True, exist_ok=True)

    pipeline_options = PdfPipelineOptions()
    pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
    pipeline_options.generate_page_images = True
    pipeline_options.generate_picture_images = True

    doc_converter = DocumentConverter(
        format_options={
            InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
        }
    )

    conv_res = doc_converter.convert(raw_source)

    output_dir.mkdir(parents=True, exist_ok=True)
    doc_filename = paper_name

    # Save images of figures and tables
    table_counter = 0
    picture_counter = 0
    for element, _level in list(conv_res.document.iterate_items()):
        if isinstance(element, TableItem):
            table_counter += 1
            element_image_filename = (
                output_dir / f"table-{table_counter}.png"
            )
            with element_image_filename.open("wb") as fp:
                element.get_image(conv_res.document).save(fp, "PNG")

        if isinstance(element, PictureItem):
            picture_counter += 1
            element_image_filename = (
                output_dir / f"picture-{picture_counter}.png"
            )
            with element_image_filename.open("wb") as fp:
                element.get_image(conv_res.document).save(fp, "PNG")

    # # Save markdown with embedded pictures
    # md_filename = output_dir / f"{doc_filename}-with-images.md"
    # conv_res.document.save_as_markdown(md_filename, image_mode=ImageRefMode.EMBEDDED)

    # Save markdown with externally referenced pictures
    md_filename = output_dir / f"{doc_filename}-with-image-refs.md"
    markdown = conv_res.document.save_as_markdown(md_filename, image_mode=ImageRefMode.REFERENCED)

    # # Save HTML with externally referenced pictures
    # html_filename = output_dir / f"{doc_filename}-with-image-refs.html"
    # conv_res.document.save_as_html(html_filename, image_mode=ImageRefMode.REFERENCED)

    images = {}
    images_and_text = extract_images_and_sections(markdown)
    if figure_count_only:
        return len(images_and_text)
    for res in images_and_text:
        image_path = os.path.join('eval_poster_markdown', paper_name, poster_method, res['image_path'])
        image_img = Image.open(image_path)
        section_text = res['section_text']
        image_clip_embedding = compute_clip_embedding(image_img, model, processor)
        section_text_clip_embedding = compute_clip_embedding(section_text, model, processor)
        msg = BaseMessage.make_user_message(
            role_name="User",
            content=prompt,
            image_list=[image_img],
        )
        response = actor_agent.step(msg)
        images[res['image_path']] = {
            'image_clip_embedding': image_clip_embedding,
            'section_text_clip_embedding': section_text_clip_embedding,
            'section_text': section_text,
            'LLM_caption': response.msgs[0].content,
        }
        actor_agent.reset()

    def replace_with_caption(match):
        # match.group(1) is the URL‐encoded path
        path = match.group(1)
        # lookup the caption (fallback to empty string if missing)
        caption = images.get(path.replace('%20', ' '), {}).get("LLM_caption", "")
        return f"Image: {caption}"

    # perform the replacement
    new_md = re.sub(
        r'!\[.*?\]\((.*?)\)',   # find ![…](path)
        replace_with_caption,   # callback to build replacement
        markdown
    )

    pkl.dump(images, open(f'eval_poster_markdown/{paper_name}/{poster_method}/images.pkl', 'wb'))
    with open(f'eval_poster_markdown/{paper_name}/{poster_method}/markdown_with_images.md', 'w') as f:
        f.write(new_md)

    poster_text = get_poster_text(poster_path)

    return images, poster_text, markdown, new_md

def get_questions(paper_text, mode, model_type):
    from dotenv import load_dotenv
    load_dotenv()
    agent_name = f'generate_question_{mode}'
    with open(f"utils/prompt_templates/{agent_name}.yaml", "r") as f:
        config = yaml.safe_load(f)

    actor_model = ModelFactory.create(
        model_platform=ModelPlatformType.OPENAI,
        model_type=model_type,
        model_config_dict=ChatGPTConfig().as_dict(), # [Optional] the config for model
    )

    actor_sys_msg = config['system_prompt']

    actor_agent = ChatAgent(
        system_message=actor_sys_msg,
        model=actor_model,
        message_window_size=10,
    )

    jinja_env = Environment(undefined=StrictUndefined)

    template = jinja_env.from_string(config["template"])
    question_generation_prompt = template.render(**{
        'document_markdown': paper_text,
    })
    response = actor_agent.step(question_generation_prompt)
    questions = get_json_from_response(response.msgs[0].content)
    questions = shuffle_question_options(questions)

    return questions

def eval_vlm_as_judge_aspect(poster_image_list, agent_config, eval_aspect):
    judge_model = ModelFactory.create(
        model_platform=agent_config['model_platform'],
        model_type=agent_config['model_type'],
        model_config_dict=agent_config['model_config'],
    )

    judge_name = f'{eval_aspect}_judge'
    with open(f"utils/prompt_templates/{judge_name}.yaml", "r") as f:
        judge_config = yaml.safe_load(f)
    
    judge_sys_msg = judge_config['system_prompt']
    judge_agent = ChatAgent(
        system_message=judge_sys_msg,
        model=judge_model,
        message_window_size=None,
    )
    jinja_env = Environment(undefined=StrictUndefined)
    template = jinja_env.from_string(judge_config["template"])
    prompt = template.render()

    judge_message = BaseMessage.make_user_message(
        role_name="User",
        content=prompt,
        image_list=poster_image_list,
    )

    response = judge_agent.step(judge_message)
    return get_json_from_response(response.msgs[0].content)

def eval_vlm_as_judge(poster_image_list, agent_config, aspect=None):
    aspects = [
        'aesthetic_element',
        'aesthetic_engagement',
        'aesthetic_layout',
        'information_low_level',
        'information_logic',
        'information_content',
    ]

    if aspect == 'aesthetic':
        aspects = [
            'aesthetic_element',
            'aesthetic_engagement',
            'aesthetic_layout',
        ]
    elif aspect == 'information':
        aspects = [
            'information_low_level',
            'information_logic',
            'information_content',
        ]

    results = {}
    for aspect in aspects:
        results[aspect] = eval_vlm_as_judge_aspect(poster_image_list, agent_config, aspect)
    
    return results