File size: 5,637 Bytes
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os, re, pdb, json
from PIL import Image
import pytesseract

import whisperx
import argparse
import torch
import numpy as np
from os import path
from pathlib import Path
from typing import List
from camel.models import ModelFactory
from camel.types import ModelType, ModelPlatformType
from camel.configs import GeminiConfig


os.environ["GEMINI_API_KEY"] = ""
prompt_path = "./prompt/content_sim_score.txt"

agent_config = {
    "model_type": ModelType.GEMINI_2_5_FLASH,
    "model_config": GeminiConfig().as_dict(),
    "model_platform": ModelPlatformType.GEMINI,}
actor_model = ModelFactory.create(
    model_platform=agent_config['model_platform'],
    model_type=agent_config['model_type'],
    model_config_dict=agent_config['model_config'],)

def extract_slide_texts(slide_dir):
    slide_texts = []
    for fname in sorted(os.listdir(slide_dir)):
        if fname.lower().endswith(('.png', '.jpg', '.jpeg')):
            path = os.path.join(slide_dir, fname)
            text = pytesseract.image_to_string(Image.open(path))
            slide_texts.append(text.strip())
    return slide_texts

def load_subtitles(sub_path):
    with open(sub_path, "r") as f:
        lines = f.readlines()
    return [line.strip() for line in lines if line.strip()]

def build_prompt(slides_1, subs_1, slides_2, subs_2):
    prompt = (
        "Human Presentation:\n"
        "Slides:\n" + "\n".join(slides_1) + "\n"
        "Subtitles:\n" + "\n".join(subs_1) + "\n\n"
        "Generated Presentation:\n"
        "Slides:\n" + "\n".join(slides_2) + "\n"
        "Subtitles:\n" + "\n".join(subs_2) + "\n\n")
    return prompt

def run_similarity_eval(slide_dir_1, slide_dir_2, sub_path_1, sub_path_2):
    slides_1 = extract_slide_texts(slide_dir_1)
    slides_2 = extract_slide_texts(slide_dir_2)
    subs_1 = load_subtitles(sub_path_1)
    subs_2 = load_subtitles(sub_path_2)

    with open(prompt_path, 'r') as f: prompt = f.readlines() 
    prompt = "\n".join(prompt)
    prompt_q = build_prompt(slides_1, subs_1, slides_2, subs_2)
    prompt = prompt + '/n' + prompt_q
    
    output = actor_model.run([{"role": "user", "content": prompt}])
    print("=== Similarity Evaluation ===\n")
    print(output.choices[0].message.content)
    return output.choices[0].message.content

def extract_plain_subtitle_with_whisperx(video_path: str, output_path: str, model_name: str = "large-v3", language: str = "en"):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = whisperx.load_model(model_name, device=device, language=language)

    audio = whisperx.load_audio(video_path)
    result = model.transcribe(audio, batch_size=16)

    with open(output_path, "w") as f:
        for seg in result["segments"]:
            f.write(seg["text"].strip() + "\n")

def extract_similarity_scores(text):
    content_match = re.search(r"Content Similarity:\s*(\d+)/5", text)
    if content_match:
        content_score = int(content_match.group(1))
        return content_score

_num_at_start = re.compile(r'^\s*["\']?(\d+)')
def sort_by_leading_number(paths: List[str]) -> List[str]:
    def key(p: str):
        name = Path(p).name  
        m = _num_at_start.match(name)
        return (int(m.group(1)) if m else float('inf'), name)
    return sorted(paths, key=key)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-r", "--result_dir", default="/path/to/result_dir")
    parser.add_argument("-g", "--gt_dir", default="/path/to/gt_dir")
    parser.add_argument("-s", "--save_dir", default="/path/to/save_dir")
    args = parser.parse_args()
    
    ## load exist result if have
    save_dir = args.save_dir
    save_dir = path.join(save_dir, path.basename(args.result_dir))
    save_path = path.join(save_dir, "content_sim.json")
    os.makedirs(save_dir, exist_ok=True)
    if path.exists(save_path):
        with open(save_path, 'r') as f: content_sim_list = json.load(f)
    else: content_sim_list = []
    
    ## path
    gt_dir, result_dir = args.gt_dir, args.result_dir
    groundtruth_list = sort_by_leading_number([path.join(gt_dir, name) for name in os.listdir(gt_dir)])
    result_list = sort_by_leading_number([path.join(result_dir, name) for name in os.listdir(result_dir)])
    
    ## eval
    for index in range(25, 100):
        # video -> subtitle
        if path.basename(args.result_dir) == "paper2video":
            p2v_video_path = path.join(result_list[index], "3_merage.mp4")
            if path.exists(p2v_video_path) is False: continue
        else:
            p2v_video_path = path.join(result_list[index], "result.mp4")
        if path.exists(p2v_video_path) is False: continue
        gt_video_path = path.join(groundtruth_list[index], "gt_presentation_video.mp4")
        extract_plain_subtitle_with_whisperx(gt_video_path, gt_video_path.replace(".mp4", "_sub.txt"))
        extract_plain_subtitle_with_whisperx(p2v_video_path, p2v_video_path.replace(".mp4", "_sub.txt"))
        
        # slide dir 
        gt_slide_dir = path.join(groundtruth_list[index], "slide_imgs")
        p2v_slide_dir = path.join(result_list[index], "slide_imgs")
        
        # eval
        result = run_similarity_eval(
            slide_dir_1=gt_slide_dir,
            slide_dir_2=p2v_slide_dir,
            sub_path_1=gt_video_path.replace(".mp4", "_sub.txt"),
            sub_path_2=p2v_video_path.replace(".mp4", "_sub.txt"))
        content_score = extract_similarity_scores(result)
        content_sim_list.append({
            "data_idx": index,
            "score": content_score
        })
    
        with open(save_path, 'w') as f: json.dump(content_sim_list, f)