|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import base64 |
|
|
import io |
|
|
import os |
|
|
from typing import Any, Optional, Union |
|
|
|
|
|
import requests |
|
|
from PIL import Image |
|
|
|
|
|
from camel.embeddings import BaseEmbedding |
|
|
from camel.types.enums import EmbeddingModelType |
|
|
from camel.utils import api_keys_required |
|
|
|
|
|
|
|
|
class JinaEmbedding(BaseEmbedding[Union[str, Image.Image]]): |
|
|
r"""Provides text and image embedding functionalities using Jina AI's API. |
|
|
|
|
|
Args: |
|
|
model_type (EmbeddingModelType, optional): The model to use for |
|
|
embeddings. (default: :obj:`JINA_EMBEDDINGS_V3`) |
|
|
api_key (Optional[str], optional): The API key for authenticating with |
|
|
Jina AI. (default: :obj:`None`) |
|
|
dimensions (Optional[int], optional): The dimension of the output |
|
|
embeddings. (default: :obj:`None`) |
|
|
task (Optional[str], optional): The type of task for text embeddings. |
|
|
Options: retrieval.query, retrieval.passage, text-matching, |
|
|
classification, separation. (default: :obj:`None`) |
|
|
late_chunking (bool, optional): If true, concatenates all sentences in |
|
|
input and treats as a single input. (default: :obj:`False`) |
|
|
normalized (bool, optional): If true, embeddings are normalized to unit |
|
|
L2 norm. (default: :obj:`False`) |
|
|
""" |
|
|
|
|
|
@api_keys_required([("api_key", 'JINA_API_KEY')]) |
|
|
def __init__( |
|
|
self, |
|
|
model_type: EmbeddingModelType = EmbeddingModelType.JINA_EMBEDDINGS_V3, |
|
|
api_key: Optional[str] = None, |
|
|
dimensions: Optional[int] = None, |
|
|
embedding_type: Optional[str] = None, |
|
|
task: Optional[str] = None, |
|
|
late_chunking: bool = False, |
|
|
normalized: bool = False, |
|
|
) -> None: |
|
|
if not model_type.is_jina: |
|
|
raise ValueError( |
|
|
f"Model type {model_type} is not a Jina model. " |
|
|
"Please use a valid Jina model type." |
|
|
) |
|
|
self.model_type = model_type |
|
|
if dimensions is None: |
|
|
self.output_dim = model_type.output_dim |
|
|
else: |
|
|
self.output_dim = dimensions |
|
|
self._api_key = api_key or os.environ.get("JINA_API_KEY") |
|
|
|
|
|
self.embedding_type = embedding_type |
|
|
self.task = task |
|
|
self.late_chunking = late_chunking |
|
|
self.normalized = normalized |
|
|
self.url = 'https://api.jina.ai/v1/embeddings' |
|
|
self.headers = { |
|
|
'Content-Type': 'application/json', |
|
|
'Accept': 'application/json', |
|
|
'Authorization': f'Bearer {self._api_key}', |
|
|
} |
|
|
|
|
|
def embed_list( |
|
|
self, |
|
|
objs: list[Union[str, Image.Image]], |
|
|
**kwargs: Any, |
|
|
) -> list[list[float]]: |
|
|
r"""Generates embeddings for the given texts or images. |
|
|
|
|
|
Args: |
|
|
objs (list[Union[str, Image.Image]]): The texts or images for which |
|
|
to generate the embeddings. |
|
|
**kwargs (Any): Extra kwargs passed to the embedding API. Not used |
|
|
in this implementation. |
|
|
|
|
|
Returns: |
|
|
list[list[float]]: A list that represents the generated embedding |
|
|
as a list of floating-point numbers. |
|
|
|
|
|
Raises: |
|
|
ValueError: If the input type is not supported. |
|
|
RuntimeError: If the API request fails. |
|
|
""" |
|
|
input_data = [] |
|
|
for obj in objs: |
|
|
if isinstance(obj, str): |
|
|
if self.model_type == EmbeddingModelType.JINA_CLIP_V2: |
|
|
input_data.append({"text": obj}) |
|
|
else: |
|
|
input_data.append(obj) |
|
|
elif isinstance(obj, Image.Image): |
|
|
if self.model_type != EmbeddingModelType.JINA_CLIP_V2: |
|
|
raise ValueError( |
|
|
f"Model {self.model_type} does not support " |
|
|
"image input. Use JINA_CLIP_V2 for image embeddings." |
|
|
) |
|
|
|
|
|
buffered = io.BytesIO() |
|
|
obj.save(buffered, format="PNG") |
|
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
|
input_data.append({"image": img_str}) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Input type {type(obj)} is not supported. " |
|
|
"Must be either str or PIL.Image" |
|
|
) |
|
|
|
|
|
data = { |
|
|
"model": self.model_type.value, |
|
|
"input": input_data, |
|
|
"embedding_type": "float", |
|
|
} |
|
|
|
|
|
if self.embedding_type is not None: |
|
|
data["embedding_type"] = self.embedding_type |
|
|
if self.task is not None: |
|
|
data["task"] = self.task |
|
|
if self.late_chunking: |
|
|
data["late_chunking"] = self.late_chunking |
|
|
if self.normalized: |
|
|
data["normalized"] = self.normalized |
|
|
try: |
|
|
response = requests.post( |
|
|
self.url, headers=self.headers, json=data, timeout=180 |
|
|
) |
|
|
response.raise_for_status() |
|
|
result = response.json() |
|
|
return [data["embedding"] for data in result["data"]] |
|
|
except requests.exceptions.RequestException as e: |
|
|
raise RuntimeError(f"Failed to get embeddings from Jina AI: {e}") |
|
|
|
|
|
def get_output_dim(self) -> int: |
|
|
r"""Returns the output dimension of the embeddings. |
|
|
|
|
|
Returns: |
|
|
int: The dimensionality of the embedding for the current model. |
|
|
""" |
|
|
return self.output_dim |
|
|
|