PaperShow / Paper2Video /src /slide_code_gen.py
ZaynZhu
Clean version without large assets
7c08dc3
'''
Slide Beamer Code Generation
'''
import re
import fitz
import yaml
import json
import bisect
import string
import os, sys, pdb
import subprocess
import multiprocessing as mp
from os import path
from pathlib import Path
from bisect import bisect_right
from camel.models import ModelFactory
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.types import ModelPlatformType
from pathlib import Path
from typing import Sequence, Tuple, Optional
from PIL import Image, ImageDraw, ImageFont
from .wei_utils import get_agent_config
def extract_json_block(text: str, first_only: bool = True):
pattern = r"```json\s*([\s\S]*?)\s*```"
matches = re.findall(pattern, text, flags=re.IGNORECASE)
if first_only:
return matches[0] if matches else text
return matches
def extract_beamer_code(tex_str):
match = re.search(r"(\\documentclass(?:\[[^\]]*\])?\{beamer\}.*?\\end\{document\})", tex_str, re.DOTALL)
return match.group(1) if match else None
def latex_code_gen(prompt_path, tex_dir, beamer_save_path,
model_config_ll, model_config_vl,
beamer_temp_name=None, if_fix=True, if_tree_search=True):
print("\n🟦 [1/8] Initializing language model for Beamer code generation...")
model = ModelFactory.create(
model_platform=model_config_ll["model_platform"],
model_type=model_config_ll["model_type"],
model_config_dict=model_config_ll.get("model_config"),
url=model_config_ll.get("url", None),)
agent = ChatAgent(model=model, system_message="",)
print("✅ Model initialized successfully.")
print("\n🟦 [2/8] Loading prompt template from:", prompt_path)
with open(prompt_path, 'r', encoding='utf-8') as f_prompt:
templete_prompt = f_prompt.read()
token_usage = {}
print("\n🟦 [3/8] Reading all .tex files from:", tex_dir)
tex_list = find_all_tex_files(tex_dir)
print(f"📄 Found {len(tex_list)} tex files.")
tex_content = '/n'.join(tex_list)
root_dir = Path(tex_dir)
all_relative_paths = [str(file.relative_to(root_dir)) for file in root_dir.rglob("*") if file.is_file()]
print(f"📁 Found {len(all_relative_paths)} project files (figures, data, etc.)")
print("\n🟦 [4/8] Generating main inference prompt...")
if beamer_temp_name is None:
main_inference_prompt = [
templete_prompt, "This is the latex code for paper:", tex_content,
"The file paths in the project are: \n{}".format(str(all_relative_paths))
]
else:
main_inference_prompt = [
templete_prompt, "This is the latex code for paper:", tex_content,
"The file paths in the project are: \n{}".format(str(all_relative_paths)),
"Use Beamer Theme: {}".format(beamer_temp_name)
]
main_inference_prompt = "\n".join(map(str, main_inference_prompt))
print("🤖 Sending prompt to model for Beamer slide generation...")
user_msg = BaseMessage.make_user_message(role_name="User", content=main_inference_prompt)
response = safe_step(agent, user_msg)
token_usage["slide_gen"] = response.info['usage']
print("✅ Slide LaTeX code generated.")
code = extract_beamer_code(response.msgs[-1].content)
if not isinstance(code, str):
print("⚠️ Failed to extract Beamer code, dumping raw output...")
print(response.msgs[-1].content)
print(f"\n🟦 [5/8] Saving generated Beamer file to: {beamer_save_path}")
with open(beamer_save_path, "w", encoding="utf-8") as f:
f.write(code)
print("✅ Beamer code saved.")
print("\n🟦 [6/8] Compiling the generated .tex file using tectonic...")
feedback = compile_tex(beamer_save_path)
## fix if error
num_try = 0
token_usage["fix"] = []
while num_try < 10:
if "error" in feedback:
print(f"⚠️ Compilation error detected, attempt {num_try+1} — fixing...")
error_info = re.findall(r'^(error: .+)', feedback, flags=re.MULTILINE)
agent.reset()
code, fix_usage = correcte_error(code, error_info, agent)
token_usage["fix"].append(fix_usage)
else:
print("✅ No further compilation errors detected.")
break
if not isinstance(code, str):
print("❌ Failed to fix code automatically.")
with open(beamer_save_path, "w", encoding="utf-8") as f:
f.write(code)
feedback = compile_tex(beamer_save_path)
num_try += 1
## improve slide layout
print("\n🟦 [7/8] Checking for layout warnings and optimizing slide layout...")
config = model_config_vl
if if_tree_search is True:
new_code_save_path, token_usage_improve = improve_layout(code, feedback, beamer_save_path, config)
token_usage["improve"] = token_usage_improve
print(f"✅ Layout improvement complete. Final slides saved at: {new_code_save_path}")
return token_usage, new_code_save_path
else:
final_pdf = beamer_save_path.replace(".tex", ".pdf")
print(f"✅ Compilation finished. Final PDF saved at: {final_pdf}")
return token_usage, final_pdf
select_proposal_prompt_path = "./Paper2Video/src/prompts/select_proposal.txt"
def improve_layout(code, feedback, beamer_save_path, model_config):
with open(select_proposal_prompt_path, 'r') as f: template_prompt = f.read()
token_usage_improve = []
## get layout warning info
warning_info = re.findall(r'^(warning: .+)', feedback, flags=re.MULTILINE)
warning_info = warning_info[:len(warning_info)//2]
warning_info = [s for s in warning_info if 'Overfull' in s]
## find out which slide needed to be improved
head = re.search(r'\\documentclass(?:\[[^\]]*\])?\{beamer\}(.*?)\\begin{document}', code, flags=re.DOTALL).group(1)
head = head + "\n" + "\\setbeamerfont{caption}{size=\\scriptsize}" ## smaller the caption front size
frames = compute_frame_spans(code)
need_improve_list = []
for warning in warning_info:
num = int(re.search(r'(?<=\.tex:)\d+', warning).group())
for idx, f in enumerate(frames):
if f["start_line"]<=num<= f["end_line"]:
if "\\includegraphics" in f["text"]:
need_improve_list.append(idx)
break
need_improve_list = sorted(set(need_improve_list))
## propose
# num_process = 4
# args_list = []
# for idx, frame_idx in enumerate(need_improve_list):
# args_list.append([idx, model_config, template_prompt, head, frames[frame_idx]])
# with mp.Pool(processes=num_process) as pool: results = pool.map(improve_per_slide, args_list)
# for result in results:
# idx, refined_code, usage_improve = result
# frames[frame_idx]["text"] = refined_code
# token_usage_improve.append(usage_improve)
imporve_model = ModelFactory.create(
model_platform=model_config["model_platform"],
model_type=model_config["model_type"],
model_config_dict=model_config.get("model_config"),
url=model_config.get("url", None),)
imporve_agent = ChatAgent(model=imporve_model, system_message="",)
proposal_tmp_dir = path.join(path.dirname(beamer_save_path), 'proposal_imgs')
os.makedirs(proposal_tmp_dir, exist_ok=True)
factors = [1, 0.75, 0.5, 0.25]
map_dic = {"A": 0, "B": 1, "C": 2, "D": 3}
for idx, frame_idx in enumerate(need_improve_list):
frame = frames[frame_idx]
proposal_imgs_path_list = []
proposal_code_list = []
for factor in factors:
proposal_code = scale_includegraphics_widths(frame["text"], factor)
proposal_code = add_small_after_blocks(proposal_code)
proposal_full_code = '\n'.join(["\\documentclass{beamer}", head, "\\begin{document}", proposal_code, "\\end{document}"])
proposal_code_save_path = beamer_save_path.replace('.tex', 'proposal_{}.tex'.format(str(factor)))
with open(proposal_code_save_path, 'w') as f: f.write(proposal_full_code)
feedback = compile_tex(proposal_code_save_path)
img_path = pdf2img(proposal_code_save_path.replace(".tex", ".pdf"), proposal_tmp_dir)
proposal_imgs_path_list.append(img_path)
proposal_code_list.append(proposal_code)
prompt_img_path = path.join(proposal_tmp_dir, "meraged.png")
make_grid_with_labels(proposal_imgs_path_list, prompt_img_path, rows=2, cols=2)
imporve_agent.reset() # inference
user_msg = BaseMessage.make_user_message(
role_name="User",
content="\n".join([template_prompt, "Here are the choices A, B, C, D"]),
image_list=[Image.open(prompt_img_path)]
)
response = safe_step(imporve_agent, user_msg)
token_usage_improve.append(response.info['usage'])
# print(response.msgs[-1].content)
choice_str = extract_json_block(response.msgs[-1].content)
print(f"🤖 Model layout decision: {choice_str}")
choice = json.loads(choice_str)
refined_code = proposal_code_list[map_dic[choice["choice"]]]
frames[frame_idx]["text"] = refined_code
## update code
new_code = ["\\documentclass{beamer}", head, "\\begin{document}"]
section = []
subsection = []
for frame in frames:
if len(frame["section"]) != 0 and frame["section"] not in section:
new_code.append("\\section{{{}}}".format(frame["section"]))
section.append(frame["section"])
subsection = []
if len(frame["subsection"]) != 0 and frame["subsection"] not in subsection:
new_code.append("\\subsection{{{}}}".format(frame["subsection"]))
subsection.append(frame["subsection"])
new_code.append(add_small_after_blocks(frame["text"]))
new_code.append("\\end{document}")
new_code = "\n".join(new_code)
new_code_save_path = beamer_save_path.replace(".tex", "_refined.tex")
with open(new_code_save_path, 'w') as f: f.write(new_code)
feedback = compile_tex(new_code_save_path)
return new_code_save_path.replace(".tex", ".pdf"), token_usage_improve
def improve_per_slide(data):
idx, model_config, template_prompt, head, frame = data
## model for selecting the proposed result
imporve_model = ModelFactory.create(
model_platform=model_config["model_platform"],
model_type=model_config["model_type"],
model_config_dict=model_config.get("model_config"),
url=model_config.get("url", None),)
imporve_agent = ChatAgent(model=imporve_model, system_message="",)
factors = [1, 0.75, 0.5, 0.25]
map_dic = {"A": 0, "B": 1, "C": 2, "D": 3}
proposal_tmp_dir = path.join(path.dirname(beamer_save_path), 'proposal_imgs_'+str(idx))
os.makedirs(proposal_tmp_dir, exist_ok=True)
proposal_imgs_path_list = []
proposal_code_list = []
for factor in factors:
proposal_code = scale_includegraphics_widths(frame["text"], factor)
proposal_code = add_small_after_blocks(proposal_code)
proposal_full_code = '\n'.join(["\\documentclass{beamer}", head, "\\begin{document}", proposal_code, "\\end{document}"])
proposal_code_save_path = beamer_save_path.replace('.tex', 'proposal_{}.tex'.format(str(factor)))
with open(proposal_code_save_path, 'w') as f: f.write(proposal_full_code)
feedback = compile_tex(proposal_code_save_path)
img_path = pdf2img(proposal_code_save_path.replace(".tex", ".pdf"), proposal_tmp_dir)
proposal_imgs_path_list.append(img_path)
proposal_code_list.append(proposal_code)
prompt_img_path = path.join(proposal_tmp_dir, "meraged.png")
make_grid_with_labels(proposal_imgs_path_list, prompt_img_path, rows=2, cols=2)
imporve_agent.reset() # inference
user_msg = BaseMessage.make_user_message(
role_name="User",
content="\n".join([template_prompt, "Here are the choices A, B, C, D"]),
image_list=[Image.open(prompt_img_path)]
)
response = safe_step(imporve_agent, user_msg)
choice = json.loads(response.msgs[-1].content)
refined_code = proposal_code_list[map_dic[choice["choice"]]]
return idx, refined_code, response.info['usage']
def make_2x2_grid_with_labels(
img_paths: Sequence[str],
out_path: str,
cell_size: Tuple[int, int] = (512, 512),
gap: int = 16,
labels: Sequence[str] = ("A", "B", "C", "D"),
bg_color: Tuple[int, int, int] = (255, 255, 255),
font_path: Optional[str] = None,
font_size: Optional[int] = None,
) -> Path:
if len(img_paths) != 4: raise ValueError("img_paths must contain 4 img pathes")
cw, ch = cell_size
canvas_w = cw * 2 + gap
canvas_h = ch * 2 + gap
canvas = Image.new("RGB", (canvas_w, canvas_h), bg_color)
def _to_rgb(img: Image.Image) -> Image.Image:
if img.mode in ("RGBA", "LA"):
base = Image.new("RGB", img.size, bg_color)
base.paste(img, mask=img.split()[-1])
return base
return img.convert("RGB")
if font_size is None:
font_size = max(16, int(min(cw, ch) * 0.08))
font = None
if font_path:
try:
font = ImageFont.truetype(font_path, font_size)
except Exception:
font = None
if font is None:
for try_name in ["DejaVuSans-Bold.ttf", "Arial.ttf", "Helvetica.ttf"]:
try:
font = ImageFont.truetype(try_name, font_size)
break
except Exception:
continue
if font is None:
font = ImageFont.load_default()
draw = ImageDraw.Draw(canvas)
positions = [
(0, 0), # A
(cw + gap, 0), # B
(0, ch + gap), # C
(cw + gap, ch + gap) # D
]
for i, (p, (x0, y0)) in enumerate(zip(img_paths, positions)):
im = Image.open(p)
im = _to_rgb(im)
w, h = im.size
scale = min(cw / w, ch / h)
nw, nh = max(1, int(w * scale)), max(1, int(h * scale))
im_resized = im.resize((nw, nh), Image.BICUBIC)
px = x0 + (cw - nw) // 2
py = y0 + (ch - nh) // 2
canvas.paste(im_resized, (px, py))
label = labels[i]
margin = max(6, font_size // 4)
tx, ty = x0 + margin, y0 + margin
draw.text(
(tx, ty), label, font=font,
fill=(255, 255, 255),
stroke_width=max(1, font_size // 16),
stroke_fill=(0, 0, 0)
)
out_path = Path(out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
canvas.save(out_path.as_posix())
def make_grid_with_labels(
img_paths: Sequence[str],
out_path: str,
cell_size: Tuple[int, int] = (512, 512),
gap: int = 16,
rows: int = 2,
cols: int = 3,
labels: Optional[Sequence[str]] = None, # 默认自动 A..Z
bg_color: Tuple[int, int, int] = (255, 255, 255),
font_path: Optional[str] = None,
font_size: Optional[int] = None,
) -> Path:
n = rows * cols
if len(img_paths) != n:
raise ValueError(f"img_paths must contain {n} image paths (got {len(img_paths)})")
if labels is None:
labels = list(string.ascii_uppercase[:n])
elif len(labels) != n:
raise ValueError(f"labels length must be {n} (got {len(labels)})")
cw, ch = cell_size
canvas_w = cw * cols + gap * (cols - 1)
canvas_h = ch * rows + gap * (rows - 1)
canvas = Image.new("RGB", (canvas_w, canvas_h), bg_color)
def _to_rgb(img: Image.Image) -> Image.Image:
if img.mode in ("RGBA", "LA"):
base = Image.new("RGB", img.size, bg_color)
base.paste(img, mask=img.split()[-1])
return base
return img.convert("RGB")
if font_size is None:
font_size = max(16, int(min(cw, ch) * 0.08))
font = None
if font_path:
try:
font = ImageFont.truetype(font_path, font_size)
except Exception:
font = None
if font is None:
for try_name in ["DejaVuSans-Bold.ttf", "Arial.ttf", "Helvetica.ttf"]:
try:
font = ImageFont.truetype(try_name, font_size)
break
except Exception:
continue
if font is None:
font = ImageFont.load_default()
draw = ImageDraw.Draw(canvas)
positions = []
for r in range(rows):
for c in range(cols):
x0 = c * (cw + gap)
y0 = r * (ch + gap)
positions.append((x0, y0))
for i, (p, (x0, y0)) in enumerate(zip(img_paths, positions)):
with Image.open(p) as im_raw:
im = _to_rgb(im_raw)
w, h = im.size
scale = min(cw / w, ch / h)
nw, nh = max(1, int(w * scale)), max(1, int(h * scale))
im_resized = im.resize((nw, nh), Image.BICUBIC)
px = x0 + (cw - nw) // 2
py = y0 + (ch - nh) // 2
canvas.paste(im_resized, (px, py))
label = labels[i]
margin = max(6, font_size // 4)
tx, ty = x0 + margin, y0 + margin
draw.text(
(tx, ty), label, font=font,
fill=(255, 0, 0),
stroke_width=max(1, font_size // 16),
stroke_fill=(255, 0, 0)
)
out_path = Path(out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
canvas.save(out_path.as_posix())
return out_path
def pdf2img(pdf_path, image_dir, dpi=300, fmt="png", strict_single_page=True):
pdf_path = Path(pdf_path)
image_dir = Path(image_dir)
if pdf_path.suffix.lower() != ".pdf": raise ValueError(f"not pdf file: {pdf_path}")
if not pdf_path.exists(): raise FileNotFoundError(f"can not find: {pdf_path}")
with fitz.open(pdf_path) as doc:
if strict_single_page and doc.page_count != 1: raise ValueError(f"not single slide {doc.page_count}: {pdf_path}")
page = doc[0]
scale = dpi / 72.0
mat = fitz.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat, alpha=False)
image_dir.mkdir(parents=True, exist_ok=True)
fmt = fmt.lower()
if fmt == "jpeg":
fmt = "jpg"
out_path = image_dir / f"{pdf_path.stem}.{fmt}"
pix.save(out_path.as_posix())
return out_path
### smaller the front size
def add_small_after_blocks(tex) -> str:
text = tex
pattern = re.compile(
r'(?m)^([ \t]*)\\begin\{(?:block|alertblock|exampleblock)\}'
r'(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?\s*\{[^}]*\}[^\n]*\r?\n'
r'([ \t]*)(?!\\small\b)'
)
def repl(m: re.Match) -> str:
return f"{m.group(0)}\\footnotesize\n{m.group(2)}"
new_text = pattern.sub(repl, text)
return new_text
### smaller the figure size
def scale_includegraphics_widths(tex: str, factor: float, precision: int = 3, add_if_missing: bool = False) -> str:
INCLUDE_RE = re.compile(
r'\\includegraphics(?:\s*\[(?P<opts>[^\]]*)\])?\s*\{(?P<path>[^}]*)\}',
re.DOTALL,
)
WIDTH_RE = re.compile(r'(?<![a-zA-Z])width\s*=\s*([^,\]]+)', re.IGNORECASE)
REL_RE = re.compile(r'^\s*(?:(\d*\.?\d+)|\.(\d+))?\s*\\(textwidth|linewidth|columnwidth)\b')
def scale_rel(expr: str) -> str | None:
val = expr.strip().strip("{}")
m = REL_RE.match(val)
if not m:
return None
num = m.group(1)
if num is None and m.group(2) is not None:
num = "0." + m.group(2)
k = 1.0 if not num else float(num)
new_k = round(k * factor, precision)
new_k_str = f"{new_k:g}"
return f"{new_k_str}\\{m.group(3)}"
def repl_inc(mm: re.Match) -> str:
opts = mm.group("opts")
path = mm.group("path")
if opts is None or opts.strip() == "":
if add_if_missing:
return f"\\includegraphics[width={factor:g}\\textwidth]{{{path}}}"
else:
return mm.group(0)
def repl_width(mw: re.Match) -> str:
expr = mw.group(1)
scaled = scale_rel(expr)
return f"width={scaled}" if scaled is not None else mw.group(0)
new_opts = WIDTH_RE.sub(repl_width, opts)
if new_opts == opts and add_if_missing:
new_opts = f"width={factor:g}\\textwidth," + opts.strip()
return f"\\includegraphics[{new_opts}]{{{path}}}"
return INCLUDE_RE.sub(repl_inc, tex)
def _line_starts(text):
starts = [0]
for m in re.finditer('\n', text):
starts.append(m.end())
return starts
def _pos_to_line(pos, line_starts):
return bisect.bisect_right(line_starts, pos)
def compute_frame_spans(code: str):
line_starts = _line_starts(code)
sec_re = re.compile(r'(?m)^\\section\*?(?:\[[^\]]*\])?\{([^}]*)\}')
sub_re = re.compile(r'(?m)^\\subsection\*?(?:\[[^\]]*\])?\{([^}]*)\}')
sections = []
for m in sec_re.finditer(code):
pos = m.start()
sections.append({
"pos": pos,
"line": _pos_to_line(pos, line_starts),
"title": m.group(1).strip()
})
subsections = []
for m in sub_re.finditer(code):
pos = m.start()
subsections.append({
"pos": pos,
"line": _pos_to_line(pos, line_starts),
"title": m.group(1).strip()
})
sec_pos_list = [s["pos"] for s in sections]
sub_pos_list = [s["pos"] for s in subsections]
frame_re = re.compile(
r'\\begin\{frame\}(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?(?:\{.*?\}){0,2}.*?\\end\{frame\}',
re.DOTALL
)
frametitle_re = re.compile(r'\\frametitle(?:<[^>]*>)?(?:\[[^\]]*\])?\{([^}]*)\}')
frame_env_title_re = re.compile(
r'^\\begin\{frame\}(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?\s*\{([^}]*)\}',
re.DOTALL
)
frames = []
for i, m in enumerate(frame_re.finditer(code)):
start, end = m.start(), m.end()
start_line = _pos_to_line(start, line_starts)
end_line = _pos_to_line(end - 1, line_starts)
text = m.group(0)
t = frametitle_re.search(text)
if t:
title = t.group(1).strip()
else:
t2 = frame_env_title_re.search(text)
title = t2.group(1).strip() if t2 else ""
if sec_pos_list:
j = bisect_right(sec_pos_list, start) - 1
if j >= 0:
sec_title = sections[j]["title"]
sec_line = sections[j]["line"]
else:
sec_title, sec_line = "", None
else:
sec_title, sec_line = "", None
if sub_pos_list:
k = bisect_right(sub_pos_list, start) - 1
if k >= 0:
sub_title = subsections[k]["title"]
sub_line = subsections[k]["line"]
else:
sub_title, sub_line = "", None
else:
sub_title, sub_line = "", None
frames.append({
"idx": i,
"start": start,
"end": end,
"start_line": start_line,
"end_line": end_line,
"title": title,
"section": sec_title,
"section_line": sec_line,
"subsection": sub_title,
"subsection_line": sub_line,
"text": text
})
return frames
## fix the grammer error with complie error
correct_prompt_path = "./Paper2Video/src/prompts/slide_beamer_correct.txt"
def correcte_error(beamer_code, error_info, agent):
with open(correct_prompt_path, 'r', encoding='utf-8') as f_prompt: templete_prompt = f_prompt.read()
inference_prompt = (
templete_prompt,
"This is the latex code for slides:", beamer_code,
"The errors are:", "\n".join(error_info)
)
inference_prompt = "\n".join(map(str, inference_prompt))
print(len(inference_prompt))
user_msg = BaseMessage.make_user_message(role_name="User", content=inference_prompt)
response = safe_step(agent, user_msg)
code = extract_beamer_code(response.msgs[-1].content)
return code, response.info['usage']
def safe_step(agent, user_msg, max_retries=5):
for attempt in range(max_retries):
response = agent.step(user_msg)
if getattr(response, "msgs", None) and len(response.msgs) > 0:
return response
print(f"[Retry {attempt+1}/{max_retries}] Empty or invalid response, retrying...")
raise RuntimeError(f"Agent failed after {max_retries} retries: {user_msg}")
# def find_all_tex_files(root_dir):
# tex_files = []
# for dirpath, dirnames, filenames in os.walk(root_dir):
# for filename in filenames:
# if filename.endswith(".tex"):
# full_path = os.path.join(dirpath, filename)
# with open(full_path, 'r', encoding='utf-8') as f:
# tex_files.append(f.read())
# return tex_files
def find_all_tex_files(root_dir):
tex_files = []
for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames:
if filename.endswith(".tex"):
full_path = os.path.join(dirpath, filename)
try:
with open(full_path, 'r', encoding='utf-8') as f:
tex_files.append(f.read())
except Exception as e:
print(f"⚠️ Skip {full_path}: {e}")
continue
return tex_files
def compile_tex(tex_path):
tex_path = Path(tex_path).resolve()
if not tex_path.exists(): raise FileNotFoundError(f"Tex file {tex_path} does not exist")
try:
result = subprocess.run(
["tectonic", str(tex_path)],
check=True,
capture_output=True,
text=True
)
print("🛠️ Compiling LaTeX file...")
print(result.stdout)
return "\n".join([result.stdout, result.stderr])
except subprocess.CalledProcessError as e:
print("Compilation failed:")
print(e.stderr)
return e.stderr