refactor: description&metrics interface
Browse files- llmdataparser/base_parser.py +76 -1
- llmdataparser/bbh_parser.py +54 -47
- llmdataparser/tmlu_parser.py +67 -52
llmdataparser/base_parser.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from functools import lru_cache
|
| 4 |
-
from typing import Any, ClassVar, Generic, TypeVar
|
| 5 |
|
| 6 |
import datasets
|
| 7 |
|
|
@@ -19,6 +19,66 @@ class ParseEntry:
|
|
| 19 |
raw_answer: str
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
class DatasetParser(Generic[T], ABC):
|
| 23 |
"""
|
| 24 |
Abstract base class defining the interface for all dataset parsers.
|
|
@@ -59,6 +119,21 @@ class DatasetParser(Generic[T], ABC):
|
|
| 59 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
| 60 |
"""
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
@dataclass(frozen=True, kw_only=True, slots=True)
|
| 64 |
class HuggingFaceParseEntry(ParseEntry):
|
|
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from functools import lru_cache
|
| 4 |
+
from typing import Any, ClassVar, Generic, List, TypeVar
|
| 5 |
|
| 6 |
import datasets
|
| 7 |
|
|
|
|
| 19 |
raw_answer: str
|
| 20 |
|
| 21 |
|
| 22 |
+
@dataclass(frozen=True, kw_only=True, slots=True)
|
| 23 |
+
class DatasetDescription:
|
| 24 |
+
"""Standardized description of a dataset."""
|
| 25 |
+
|
| 26 |
+
name: str
|
| 27 |
+
purpose: str
|
| 28 |
+
source: str
|
| 29 |
+
language: str
|
| 30 |
+
format: str
|
| 31 |
+
characteristics: str
|
| 32 |
+
citation: str | None = None
|
| 33 |
+
additional_info: dict[str, Any] | None = None
|
| 34 |
+
|
| 35 |
+
@classmethod
|
| 36 |
+
def create(
|
| 37 |
+
cls,
|
| 38 |
+
name: str,
|
| 39 |
+
purpose: str,
|
| 40 |
+
source: str,
|
| 41 |
+
language: str,
|
| 42 |
+
format: str,
|
| 43 |
+
characteristics: str,
|
| 44 |
+
citation: str | None = None,
|
| 45 |
+
additional_info: dict[str, Any] | None = None,
|
| 46 |
+
) -> "DatasetDescription":
|
| 47 |
+
return cls(
|
| 48 |
+
name=name,
|
| 49 |
+
purpose=purpose,
|
| 50 |
+
source=source,
|
| 51 |
+
language=language,
|
| 52 |
+
format=format,
|
| 53 |
+
characteristics=characteristics,
|
| 54 |
+
citation=citation,
|
| 55 |
+
additional_info=additional_info,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@dataclass(frozen=True, kw_only=True, slots=True)
|
| 60 |
+
class EvaluationMetric:
|
| 61 |
+
"""Description of an evaluation metric for a dataset."""
|
| 62 |
+
|
| 63 |
+
name: str
|
| 64 |
+
type: str
|
| 65 |
+
description: str
|
| 66 |
+
implementation: str
|
| 67 |
+
primary: bool
|
| 68 |
+
|
| 69 |
+
@classmethod
|
| 70 |
+
def create(
|
| 71 |
+
cls, name: str, type: str, description: str, implementation: str, primary: bool
|
| 72 |
+
) -> "EvaluationMetric":
|
| 73 |
+
return cls(
|
| 74 |
+
name=name,
|
| 75 |
+
type=type,
|
| 76 |
+
description=description,
|
| 77 |
+
implementation=implementation,
|
| 78 |
+
primary=primary,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
class DatasetParser(Generic[T], ABC):
|
| 83 |
"""
|
| 84 |
Abstract base class defining the interface for all dataset parsers.
|
|
|
|
| 119 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
| 120 |
"""
|
| 121 |
|
| 122 |
+
def get_dataset_description(self) -> DatasetDescription:
|
| 123 |
+
"""Returns a standardized description of the dataset."""
|
| 124 |
+
return DatasetDescription(
|
| 125 |
+
name="Unknown",
|
| 126 |
+
purpose="Not specified",
|
| 127 |
+
source="Not specified",
|
| 128 |
+
language="Not specified",
|
| 129 |
+
format="Not specified",
|
| 130 |
+
characteristics="Not specified",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def get_evaluation_metrics(self) -> List[EvaluationMetric]:
|
| 134 |
+
"""Returns the recommended evaluation metrics for the dataset."""
|
| 135 |
+
return []
|
| 136 |
+
|
| 137 |
|
| 138 |
@dataclass(frozen=True, kw_only=True, slots=True)
|
| 139 |
class HuggingFaceParseEntry(ParseEntry):
|
llmdataparser/bbh_parser.py
CHANGED
|
@@ -1,7 +1,12 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
-
from typing import Any, ClassVar,
|
| 3 |
-
|
| 4 |
-
from llmdataparser.base_parser import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from llmdataparser.prompts import BBH_SYSTEM_PROMPT # You'll need to create this
|
| 6 |
|
| 7 |
|
|
@@ -87,26 +92,21 @@ class BBHDatasetParser(HuggingFaceDatasetParser[BBHParseEntry]):
|
|
| 87 |
task_name=task,
|
| 88 |
)
|
| 89 |
|
| 90 |
-
def get_dataset_description(self) ->
|
| 91 |
"""Returns a description of the Big Bench Hard dataset."""
|
| 92 |
-
return
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
"
|
| 98 |
-
|
| 99 |
-
"characteristics": (
|
| 100 |
"Tasks require complex multi-step reasoning and were selected based on "
|
| 101 |
"initial model performance below human baseline. Performance can be "
|
| 102 |
"significantly improved through chain-of-thought prompting. The dataset "
|
| 103 |
"includes 23 core tasks plus additional related tasks."
|
| 104 |
),
|
| 105 |
-
|
| 106 |
-
"With chain-of-thought prompting, PaLM surpassed human performance on "
|
| 107 |
-
"10/23 tasks, while Codex surpassed human performance on 17/23 tasks"
|
| 108 |
-
),
|
| 109 |
-
"citation": (
|
| 110 |
"@article{suzgun2022challenging,\n"
|
| 111 |
" title={Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them},\n"
|
| 112 |
' author={Suzgun, Mirac and Scales, Nathan and Sch{"a}rli, Nathanael and Gehrmann, Sebastian and Tay, Yi and Chung, Hyung Won and Chowdhery, Aakanksha and Le, Quoc V and Chi, Ed H and Zhou, Denny and Wei, Jason},\n'
|
|
@@ -114,39 +114,46 @@ class BBHDatasetParser(HuggingFaceDatasetParser[BBHParseEntry]):
|
|
| 114 |
" year={2022}\n"
|
| 115 |
"}"
|
| 116 |
),
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
def get_evaluation_metrics(self) -> List[
|
| 120 |
"""Returns the recommended evaluation metrics for BBH dataset."""
|
| 121 |
return [
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
]
|
| 151 |
|
| 152 |
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, ClassVar, List
|
| 3 |
+
|
| 4 |
+
from llmdataparser.base_parser import (
|
| 5 |
+
DatasetDescription,
|
| 6 |
+
EvaluationMetric,
|
| 7 |
+
HuggingFaceDatasetParser,
|
| 8 |
+
HuggingFaceParseEntry,
|
| 9 |
+
)
|
| 10 |
from llmdataparser.prompts import BBH_SYSTEM_PROMPT # You'll need to create this
|
| 11 |
|
| 12 |
|
|
|
|
| 92 |
task_name=task,
|
| 93 |
)
|
| 94 |
|
| 95 |
+
def get_dataset_description(self) -> DatasetDescription:
|
| 96 |
"""Returns a description of the Big Bench Hard dataset."""
|
| 97 |
+
return DatasetDescription.create(
|
| 98 |
+
name="Big Bench Hard (BBH)",
|
| 99 |
+
purpose="A curated subset of 23 challenging BIG-Bench tasks where language models initially performed below average human-rater performance",
|
| 100 |
+
source="https://github.com/suzgunmirac/BIG-Bench-Hard",
|
| 101 |
+
language="English",
|
| 102 |
+
format="Multiple choice questions with single correct answers",
|
| 103 |
+
characteristics=(
|
|
|
|
| 104 |
"Tasks require complex multi-step reasoning and were selected based on "
|
| 105 |
"initial model performance below human baseline. Performance can be "
|
| 106 |
"significantly improved through chain-of-thought prompting. The dataset "
|
| 107 |
"includes 23 core tasks plus additional related tasks."
|
| 108 |
),
|
| 109 |
+
citation=(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
"@article{suzgun2022challenging,\n"
|
| 111 |
" title={Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them},\n"
|
| 112 |
' author={Suzgun, Mirac and Scales, Nathan and Sch{"a}rli, Nathanael and Gehrmann, Sebastian and Tay, Yi and Chung, Hyung Won and Chowdhery, Aakanksha and Le, Quoc V and Chi, Ed H and Zhou, Denny and Wei, Jason},\n'
|
|
|
|
| 114 |
" year={2022}\n"
|
| 115 |
"}"
|
| 116 |
),
|
| 117 |
+
additional_info={
|
| 118 |
+
"model_performance": (
|
| 119 |
+
"With chain-of-thought prompting, PaLM surpassed human performance on "
|
| 120 |
+
"10/23 tasks, while Codex surpassed human performance on 17/23 tasks"
|
| 121 |
+
),
|
| 122 |
+
"size": "6.5k examples across 27 tasks (23 core + 4 related)",
|
| 123 |
+
},
|
| 124 |
+
)
|
| 125 |
|
| 126 |
+
def get_evaluation_metrics(self) -> List[EvaluationMetric]:
|
| 127 |
"""Returns the recommended evaluation metrics for BBH dataset."""
|
| 128 |
return [
|
| 129 |
+
EvaluationMetric.create(
|
| 130 |
+
name="accuracy",
|
| 131 |
+
type="classification",
|
| 132 |
+
description="Proportion of exactly correct answers (after stripping parentheses)",
|
| 133 |
+
implementation="evaluate.load('accuracy')",
|
| 134 |
+
primary=True,
|
| 135 |
+
),
|
| 136 |
+
EvaluationMetric.create(
|
| 137 |
+
name="human_eval_delta",
|
| 138 |
+
type="comparison",
|
| 139 |
+
description="Difference between model accuracy and average human-rater performance baseline",
|
| 140 |
+
implementation="custom_human_baseline_comparison",
|
| 141 |
+
primary=True,
|
| 142 |
+
),
|
| 143 |
+
EvaluationMetric.create(
|
| 144 |
+
name="per_task_accuracy",
|
| 145 |
+
type="classification",
|
| 146 |
+
description="Accuracy broken down by individual reasoning tasks",
|
| 147 |
+
implementation="custom_task_accuracy",
|
| 148 |
+
primary=False,
|
| 149 |
+
),
|
| 150 |
+
EvaluationMetric.create(
|
| 151 |
+
name="exact_match",
|
| 152 |
+
type="string_match",
|
| 153 |
+
description="Strict exact match between predicted and target answers",
|
| 154 |
+
implementation="evaluate.load('exact_match')",
|
| 155 |
+
primary=False,
|
| 156 |
+
),
|
| 157 |
]
|
| 158 |
|
| 159 |
|
llmdataparser/tmlu_parser.py
CHANGED
|
@@ -1,7 +1,12 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
-
from typing import Any,
|
| 3 |
-
|
| 4 |
-
from llmdataparser.base_parser import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from llmdataparser.prompts import TMLU_SYSTEM_PROMPT
|
| 6 |
|
| 7 |
TMLU_VALID_ANSWERS: Final[set[str]] = {"A", "B", "C", "D"}
|
|
@@ -118,63 +123,73 @@ class TMLUDatasetParser(HuggingFaceDatasetParser[TMLUParseEntry]):
|
|
| 118 |
metadata=metadata,
|
| 119 |
)
|
| 120 |
|
| 121 |
-
def get_dataset_description(self) ->
|
| 122 |
"""Returns description of the TMLU dataset."""
|
| 123 |
-
return
|
| 124 |
-
|
| 125 |
-
"
|
| 126 |
-
"
|
| 127 |
-
"
|
| 128 |
-
"
|
| 129 |
-
|
| 130 |
-
"size": "Multiple subjects across different test types",
|
| 131 |
-
"domain": "Education and Professional Certification",
|
| 132 |
-
"characteristics": (
|
| 133 |
"Covers various subjects including Advanced Subjects Test (AST), "
|
| 134 |
"General Scholastic Ability Test (GSAT), College Admission Practice (CAP), "
|
| 135 |
"and professional certifications"
|
| 136 |
),
|
| 137 |
-
"
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
def get_evaluation_metrics(self) ->
|
| 141 |
"""Returns recommended evaluation metrics for TMLU."""
|
| 142 |
return [
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
]
|
| 179 |
|
| 180 |
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, Final
|
| 3 |
+
|
| 4 |
+
from llmdataparser.base_parser import (
|
| 5 |
+
DatasetDescription,
|
| 6 |
+
EvaluationMetric,
|
| 7 |
+
HuggingFaceDatasetParser,
|
| 8 |
+
HuggingFaceParseEntry,
|
| 9 |
+
)
|
| 10 |
from llmdataparser.prompts import TMLU_SYSTEM_PROMPT
|
| 11 |
|
| 12 |
TMLU_VALID_ANSWERS: Final[set[str]] = {"A", "B", "C", "D"}
|
|
|
|
| 123 |
metadata=metadata,
|
| 124 |
)
|
| 125 |
|
| 126 |
+
def get_dataset_description(self) -> DatasetDescription:
|
| 127 |
"""Returns description of the TMLU dataset."""
|
| 128 |
+
return DatasetDescription.create(
|
| 129 |
+
name="Taiwan Multiple-choice Language Understanding (TMLU)",
|
| 130 |
+
language="Traditional Chinese",
|
| 131 |
+
purpose="Evaluate models on Taiwan-specific educational and professional knowledge",
|
| 132 |
+
source="Various Taiwan standardized tests and professional certifications",
|
| 133 |
+
format="Multiple choice questions (A/B/C/D)",
|
| 134 |
+
characteristics=(
|
|
|
|
|
|
|
|
|
|
| 135 |
"Covers various subjects including Advanced Subjects Test (AST), "
|
| 136 |
"General Scholastic Ability Test (GSAT), College Admission Practice (CAP), "
|
| 137 |
"and professional certifications"
|
| 138 |
),
|
| 139 |
+
citation="""@article{DBLP:journals/corr/abs-2403-20180,
|
| 140 |
+
author = {Po-Heng Chen and Sijia Cheng and Wei-Lin Chen and Yen-Ting Lin and Yun-Nung Chen},
|
| 141 |
+
title = {Measuring Taiwanese Mandarin Language Understanding},
|
| 142 |
+
journal = {CoRR},
|
| 143 |
+
volume = {abs/2403.20180},
|
| 144 |
+
year = {2024},
|
| 145 |
+
url = {https://doi.org/10.48550/arXiv.2403.20180},
|
| 146 |
+
doi = {10.48550/ARXIV.2403.20180},
|
| 147 |
+
eprinttype = {arXiv},
|
| 148 |
+
eprint = {2403.20180},
|
| 149 |
+
timestamp = {Wed, 10 Apr 2024 17:37:45 +0200},
|
| 150 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2403-20180.bib},
|
| 151 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 152 |
+
}""",
|
| 153 |
+
)
|
| 154 |
|
| 155 |
+
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
| 156 |
"""Returns recommended evaluation metrics for TMLU."""
|
| 157 |
return [
|
| 158 |
+
EvaluationMetric.create(
|
| 159 |
+
name="accuracy",
|
| 160 |
+
type="classification",
|
| 161 |
+
description="Overall percentage of correctly answered questions",
|
| 162 |
+
implementation="datasets.load_metric('accuracy')",
|
| 163 |
+
primary=True,
|
| 164 |
+
),
|
| 165 |
+
EvaluationMetric.create(
|
| 166 |
+
name="per_subject_accuracy",
|
| 167 |
+
type="classification",
|
| 168 |
+
description="Accuracy broken down by subject areas (AST, GSAT, CAP, etc.)",
|
| 169 |
+
implementation="custom_subject_accuracy",
|
| 170 |
+
primary=True,
|
| 171 |
+
),
|
| 172 |
+
EvaluationMetric.create(
|
| 173 |
+
name="per_difficulty_accuracy",
|
| 174 |
+
type="classification",
|
| 175 |
+
description="Accuracy broken down by test difficulty levels",
|
| 176 |
+
implementation="custom_difficulty_accuracy",
|
| 177 |
+
primary=False,
|
| 178 |
+
),
|
| 179 |
+
EvaluationMetric.create(
|
| 180 |
+
name="confusion_matrix",
|
| 181 |
+
type="classification",
|
| 182 |
+
description="Distribution of predicted vs actual answers",
|
| 183 |
+
implementation="datasets.load_metric('confusion_matrix')",
|
| 184 |
+
primary=False,
|
| 185 |
+
),
|
| 186 |
+
EvaluationMetric.create(
|
| 187 |
+
name="explanation_quality",
|
| 188 |
+
type="text",
|
| 189 |
+
description="Quality assessment of model explanations when available",
|
| 190 |
+
implementation="custom_explanation_metric",
|
| 191 |
+
primary=False,
|
| 192 |
+
),
|
| 193 |
]
|
| 194 |
|
| 195 |
|