feat: mmlu parser
Browse files- llmdataparser/mmlu_parser.py +81 -0
llmdataparser/mmlu_parser.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Any
|
| 3 |
+
|
| 4 |
+
from llmdataparser.base_parser import HuggingFaceDatasetParser, ParseEntry
|
| 5 |
+
from llmdataparser.prompts import MMLU_SYSTEM_PROMPT
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass(frozen=True)
|
| 9 |
+
class MMLUParseEntry(ParseEntry):
|
| 10 |
+
"""
|
| 11 |
+
Custom entry class for MMLU, with fields specific to this dataset parser.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
prompt: str
|
| 15 |
+
answer_letter: str
|
| 16 |
+
|
| 17 |
+
@classmethod
|
| 18 |
+
def create(cls, prompt: str, answer_letter: str) -> "MMLUParseEntry":
|
| 19 |
+
if answer_letter not in {"A", "B", "C", "D"}:
|
| 20 |
+
raise ValueError(
|
| 21 |
+
f"Invalid answer_letter '{answer_letter}'; must be one of 'A', 'B', 'C', 'D'."
|
| 22 |
+
)
|
| 23 |
+
return cls(prompt=prompt, answer_letter=answer_letter)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class MMLUDatasetParser(HuggingFaceDatasetParser[MMLUParseEntry]):
|
| 27 |
+
_data_source = "cais/mmlu"
|
| 28 |
+
|
| 29 |
+
def __init__(self, system_prompt: str = MMLU_SYSTEM_PROMPT):
|
| 30 |
+
super().__init__() # Properly initialize the base class
|
| 31 |
+
self.parsed_data: list[MMLUParseEntry] = []
|
| 32 |
+
self.task_names: list[str] = []
|
| 33 |
+
self.subject_list: set[str] = set()
|
| 34 |
+
self.system_prompt: str = system_prompt
|
| 35 |
+
super().__init__()
|
| 36 |
+
|
| 37 |
+
def parse(self, split_names: str | list[str] | None = None, **kwargs: Any) -> None:
|
| 38 |
+
self.parsed_data.clear()
|
| 39 |
+
if self.raw_data is None:
|
| 40 |
+
raise ValueError("No data loaded. Please load the dataset first.")
|
| 41 |
+
|
| 42 |
+
if split_names is None:
|
| 43 |
+
split_names = self.task_names
|
| 44 |
+
elif isinstance(split_names, str):
|
| 45 |
+
split_names = [split_names]
|
| 46 |
+
|
| 47 |
+
for split_name in split_names:
|
| 48 |
+
if split_name not in self.task_names:
|
| 49 |
+
raise ValueError(f"Task '{split_name}' not found in the dataset.")
|
| 50 |
+
|
| 51 |
+
dataset_split = self.raw_data[split_name]
|
| 52 |
+
for index, entry in enumerate(dataset_split, start=1):
|
| 53 |
+
data_entry = self.process_entry(entry, **kwargs)
|
| 54 |
+
self._parsed_data.append(data_entry)
|
| 55 |
+
self.subject_list.add(entry.get("subject", "Unknown"))
|
| 56 |
+
print(f"Parsed {index} data points from task '{split_name}'.")
|
| 57 |
+
|
| 58 |
+
print(
|
| 59 |
+
f"Number of subjects: {len(self.subject_list)}. "
|
| 60 |
+
"For more details, please check the `self.subject_list` attribute."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def process_entry(self, row: dict[str, Any], **kwargs) -> MMLUParseEntry:
|
| 64 |
+
"""
|
| 65 |
+
Generate a prompt and expected answer from the given row.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
row (dict[str, Any]): A data point to be formatted.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
MMLUParseEntry: The formatted entry object.
|
| 72 |
+
"""
|
| 73 |
+
choices = "\n".join(
|
| 74 |
+
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(row["choices"])
|
| 75 |
+
)
|
| 76 |
+
prompt = (
|
| 77 |
+
f"{self.system_prompt}\nQuestion: {row['question']}\n{choices}\nAnswer:"
|
| 78 |
+
)
|
| 79 |
+
answer_letter = chr(65 + row["answer"]) # Convert index to 'A', 'B', 'C', 'D'
|
| 80 |
+
|
| 81 |
+
return MMLUParseEntry.create(prompt, answer_letter)
|