Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,45 @@
|
|
| 1 |
from transformers import pipeline
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
def chat_fn(message, history):
|
| 8 |
history = history or []
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
history
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
return messages, history
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
with gr.Blocks() as demo:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
demo.launch()
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
+
# 使用中文 GPT2 對話模型(支援 CPU)
|
| 5 |
+
generator = pipeline(
|
| 6 |
+
"text-generation",
|
| 7 |
+
model="thu-coai/CDial-GPT2_LCCC-base",
|
| 8 |
+
tokenizer="thu-coai/CDial-GPT2_LCCC-base",
|
| 9 |
+
device=-1 # 使用 CPU
|
| 10 |
+
)
|
| 11 |
|
| 12 |
+
# 對話處理函式
|
| 13 |
def chat_fn(message, history):
|
| 14 |
history = history or []
|
| 15 |
+
|
| 16 |
+
# 將所有歷史訊息合併為 prompt
|
| 17 |
+
prompt = ""
|
| 18 |
+
for user_msg, bot_msg in history:
|
| 19 |
+
prompt += f"你說:{user_msg}\nAI說:{bot_msg}\n"
|
| 20 |
+
prompt += f"你說:{message}\nAI說:"
|
|
|
|
| 21 |
|
| 22 |
+
# 生成新回應
|
| 23 |
+
output = generator(prompt, max_new_tokens=80, pad_token_id=0)[0]["generated_text"]
|
| 24 |
+
|
| 25 |
+
# 從模型輸出中擷取 AI 回覆
|
| 26 |
+
response = output.split("AI說:")[-1].split("你說:")[-1].strip()
|
| 27 |
+
|
| 28 |
+
# 更新歷史
|
| 29 |
+
history.append((message, response))
|
| 30 |
+
return history, history
|
| 31 |
+
|
| 32 |
+
# 建立 Gradio 介面
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## 🧠 中文聊天機器人(記住上下文)")
|
| 35 |
+
|
| 36 |
+
chatbot = gr.Chatbot(label="GPT2 中文對話")
|
| 37 |
+
msg = gr.Textbox(show_label=False, placeholder="請輸入訊息,Enter 送出")
|
| 38 |
+
clear = gr.Button("🧹 清除對話")
|
| 39 |
+
|
| 40 |
+
state = gr.State([]) # 儲存對話歷史
|
| 41 |
|
| 42 |
+
msg.submit(chat_fn, inputs=[msg, state], outputs=[chatbot, state])
|
| 43 |
+
clear.click(lambda: ([], []), outputs=[chatbot, state])
|
| 44 |
|
| 45 |
demo.launch()
|