Spaces:
Runtime error
Runtime error
| from typing import List, Any | |
| import tiktoken | |
| class AbstractCompressor: | |
| base_model = None | |
| tokenizer = None | |
| gpt_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo-16k") | |
| def compress(self, original_prompt: str, ratio: float) -> dict: | |
| """ | |
| Input original prompt/sentence and compression ratio, return compressed prompt/sentence.\ | |
| :param original_prompt: | |
| :param ratio: | |
| :return: dict object | |
| """ | |
| # output content including | |
| # { | |
| # 'compressed_prompt': compressed prompt, | |
| # 'ratio': compression ratio, | |
| # 'original_tokens': token count of original prompt, | |
| # 'compressed_tokens': token count of compressed prompt | |
| # } | |
| raise NotImplementedError() | |
| def fit(self, datas: List[dict], valid_size: int) -> None: | |
| """ | |
| For trainable methods, call this function for training parameters. | |
| Require training LongBench and valid set size. | |
| :param datas: | |
| :param valid_size: | |
| :return: | |
| """ | |
| raise NotImplementedError() | |
| def set_model(self, model: Any, **kwargs): | |
| """ | |
| Specify a trained or a pre-trained model. | |
| :param model: | |
| :param kwargs: | |
| :return: | |
| """ | |
| pass | |