Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +42 -0
- compressor.py +65 -0
- llmlingua_compressor_pro.py +1152 -0
- longlingua_compressor.py +1150 -0
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from compressor import PromptCompressor
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def compressit(original_text, compressor1, ratio, maxlength):
|
| 6 |
+
|
| 7 |
+
if compressor1=="Selective Context":
|
| 8 |
+
compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cuda')
|
| 9 |
+
elif compressor1=="LLMLingua":
|
| 10 |
+
return "Sorry, currently we cannot provide services for LLMLingua due to the Huggingface Token issue. Please try other compressors."
|
| 11 |
+
elif compressor1=="LongLLMLingua":
|
| 12 |
+
return "Sorry, currently we cannot provide services for LongLLMLingua due to the Huggingface Token issue. Please try other compressors."
|
| 13 |
+
elif compressor1=="SCRL":
|
| 14 |
+
compressor = PromptCompressor(type='SCRLCompressor', model_dir="models/gigaword-L8/", device="cuda", tokenizer_dir="sentence-transformers/paraphrase-distilroberta-base-v2")
|
| 15 |
+
elif compressor1=="KiS":
|
| 16 |
+
compressor = PromptCompressor(type='KiSCompressor', device="cuda", model_dir="philippelaban/keep_it_simple")
|
| 17 |
+
else:
|
| 18 |
+
compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cuda')
|
| 19 |
+
|
| 20 |
+
if compressor1 != "SCRL":
|
| 21 |
+
compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio), max_length=int(maxlength))
|
| 22 |
+
else:
|
| 23 |
+
compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio), max_length=int(maxlength))
|
| 24 |
+
return compressed_prompt["compressed_prompt"]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
demo = gr.Interface(
|
| 28 |
+
fn=compressit,
|
| 29 |
+
inputs=[
|
| 30 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="input", info="Enter the original prompt here."),
|
| 31 |
+
gr.Dropdown(
|
| 32 |
+
["Selective Context", "LLMLingua", "LongLLMLingua", "SCRL", "KiS"], label="compressor", info="Choose your compressor here. \n Currently, we cannot support the online demo for LLMLingua and LongLLMLingua due to the Huggingface Token issue."
|
| 33 |
+
),
|
| 34 |
+
gr.Textbox(lines=1, placeholder="Enter the compression ratio here...", info="Ratio only works for Selective Context, LLMLingua and LongLLMLingua."),
|
| 35 |
+
gr.Textbox(lines=1, placeholder="Enter the max_length parameter if you are using SCRL or KiS", label="max_length", info="If you are using SCRL or KiS, fill in the parameter, if not, just ignore this.\n Hint: For SCRL, max_length should be shorter than the lenght of original prompt; For KiS, max_length should be longer than it.")
|
| 36 |
+
],
|
| 37 |
+
outputs=[
|
| 38 |
+
gr.Textbox(lines=1, info="Please note that when the text is very short, LLMLingua and LongLLMLingua will not work.")
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
demo.launch(share=False)
|
compressor.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from selective_context_compressor import SCCompressor
|
| 2 |
+
from kis import KiSCompressor
|
| 3 |
+
from scrl_compressor import SCRLCompressor
|
| 4 |
+
from llmlingua_compressor_pro import LLMLinguaCompressor
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class PromptCompressor:
|
| 9 |
+
def __init__(self, type: str = 'SCCompressor', lang: str = 'en', model='gpt2', device='cuda', model_dir: str = '',
|
| 10 |
+
use_auth_token: bool = False, open_api_config: dict = {}, token: str = '',
|
| 11 |
+
tokenizer_dir: str = "sentence-transformers/paraphrase-distilroberta-base-v2"):
|
| 12 |
+
self.type = type
|
| 13 |
+
if self.type == 'SCCompressor':
|
| 14 |
+
self.compressor = SCCompressor(lang=lang, model=model, device=device)
|
| 15 |
+
elif self.type == 'KiSCompressor':
|
| 16 |
+
self.compressor = KiSCompressor(DEVICE=device, model_dir=model_dir)
|
| 17 |
+
elif self.type == 'LLMLinguaCompressor':
|
| 18 |
+
self.compressor = LLMLinguaCompressor(device_map=device, model_name=model_dir, use_auth_token=use_auth_token, open_api_config=open_api_config, token=token)
|
| 19 |
+
elif self.type == 'LongLLMLinguaCompressor':
|
| 20 |
+
self.compressor = LLMLinguaCompressor(device_map=device, model_name=model_dir, use_auth_token=use_auth_token, open_api_config=open_api_config, token=token)
|
| 21 |
+
elif self.type == 'SCRLCompressor':
|
| 22 |
+
if model_dir:
|
| 23 |
+
self.compressor = SCRLCompressor(model_dir=model_dir, device=device, tokenizer_dir=tokenizer_dir)
|
| 24 |
+
else:
|
| 25 |
+
print("model_dir parameter is required")
|
| 26 |
+
|
| 27 |
+
def compressgo(self, original_prompt: str = '', ratio: float = 0.5, level: str = 'phrase',
|
| 28 |
+
max_length: int = 256, num_beams: int = 4, do_sample: bool = True, num_return_sequences: int = 1,
|
| 29 |
+
target_index: int = 0, instruction: str = "", question: str = "", target_token: float = -1,
|
| 30 |
+
iterative_size: int = 200, force_context_ids: List[int] = None, force_context_number: int = None,
|
| 31 |
+
use_sentence_level_filter: bool = False, use_context_level_filter: bool = True,
|
| 32 |
+
use_token_level_filter: bool = True, keep_split: bool = False, keep_first_sentence: int = 0,
|
| 33 |
+
keep_last_sentence: int = 0, keep_sentence_number: int = 0, high_priority_bonus: int = 100,
|
| 34 |
+
context_budget: str = "+100", token_budget_ratio: float = 1.4, condition_in_question: str = "none",
|
| 35 |
+
reorder_context: str = "original", dynamic_context_compression_ratio: float = 0.0,
|
| 36 |
+
condition_compare: bool = False, add_instruction: bool = False, rank_method: str = "llmlingua",
|
| 37 |
+
concate_question: bool = True,):
|
| 38 |
+
if self.type == 'SCCompressor':
|
| 39 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, level=level)
|
| 40 |
+
elif self.type == 'KiSCompressor':
|
| 41 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, max_length=max_length, num_beams=num_beams, do_sample=do_sample, num_return_sequences=num_return_sequences, target_index=target_index)
|
| 42 |
+
elif self.type == 'SCRLCompressor':
|
| 43 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio, max_length=max_length)
|
| 44 |
+
elif self.type == 'LLMLinguaCompressor':
|
| 45 |
+
return self.compressor.compress(context=original_prompt, ratio=ratio, instruction=instruction, question=question, target_token=target_token,
|
| 46 |
+
iterative_size=iterative_size, force_context_ids=force_context_ids, force_context_number=force_context_number,
|
| 47 |
+
use_token_level_filter=use_token_level_filter, use_context_level_filter=use_context_level_filter,
|
| 48 |
+
use_sentence_level_filter=use_sentence_level_filter, keep_split=keep_split, keep_first_sentence=keep_first_sentence,
|
| 49 |
+
keep_last_sentence=keep_last_sentence, keep_sentence_number=keep_sentence_number, high_priority_bonus=high_priority_bonus,
|
| 50 |
+
context_budget=context_budget, token_budget_ratio=token_budget_ratio, condition_in_question=condition_in_question,
|
| 51 |
+
reorder_context = reorder_context, dynamic_context_compression_ratio=dynamic_context_compression_ratio, condition_compare=condition_compare,
|
| 52 |
+
add_instruction=add_instruction, rank_method=rank_method, concate_question=concate_question)
|
| 53 |
+
elif self.type == 'LongLLMLinguaCompressor':
|
| 54 |
+
return self.compressor.compress(context=original_prompt, ratio=ratio, instruction=instruction, question=question, target_token=target_token,
|
| 55 |
+
iterative_size=iterative_size, force_context_ids=force_context_ids, force_context_number=force_context_number,
|
| 56 |
+
use_token_level_filter=use_token_level_filter, use_context_level_filter=use_context_level_filter,
|
| 57 |
+
use_sentence_level_filter=use_sentence_level_filter, keep_split=keep_split, keep_first_sentence=keep_first_sentence,
|
| 58 |
+
keep_last_sentence=keep_last_sentence, keep_sentence_number=keep_sentence_number, high_priority_bonus=high_priority_bonus,
|
| 59 |
+
context_budget=context_budget, token_budget_ratio=token_budget_ratio, condition_in_question=condition_in_question,
|
| 60 |
+
reorder_context = reorder_context, dynamic_context_compression_ratio=dynamic_context_compression_ratio, condition_compare=condition_compare,
|
| 61 |
+
add_instruction=add_instruction, rank_method=rank_method, concate_question=concate_question)
|
| 62 |
+
else:
|
| 63 |
+
return self.compressor.compress(original_prompt=original_prompt, ratio=ratio)
|
| 64 |
+
|
| 65 |
+
|
llmlingua_compressor_pro.py
ADDED
|
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from llmlingua import PromptCompressor
|
| 2 |
+
import bisect
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
import nltk
|
| 10 |
+
import tiktoken
|
| 11 |
+
import re
|
| 12 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 13 |
+
from abs_compressor import AbstractCompressor
|
| 14 |
+
|
| 15 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
| 16 |
+
|
| 17 |
+
class LLMLinguaCompressor(AbstractCompressor):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
| 21 |
+
device_map: str = "cuda",
|
| 22 |
+
use_auth_token: bool = False,
|
| 23 |
+
open_api_config: dict = {},
|
| 24 |
+
token: str = ''
|
| 25 |
+
):
|
| 26 |
+
self.model_name = model_name
|
| 27 |
+
self.token = token
|
| 28 |
+
self.load_model(model_name, device_map, use_auth_token)
|
| 29 |
+
self.retrieval_model = None
|
| 30 |
+
self.retrieval_model_name = None
|
| 31 |
+
self.open_api_config = open_api_config
|
| 32 |
+
self.cache_bos_num = 10
|
| 33 |
+
|
| 34 |
+
def load_model(
|
| 35 |
+
self, model_name: str, device_map: str = "cuda", use_auth_token: bool = False
|
| 36 |
+
):
|
| 37 |
+
config = AutoConfig.from_pretrained(self.model_name)
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 39 |
+
tokenizer.padding_side = "left"
|
| 40 |
+
tokenizer.pad_token_id = (
|
| 41 |
+
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
|
| 42 |
+
)
|
| 43 |
+
self.device = (
|
| 44 |
+
device_map if any(key in device_map for key in ["cuda", "cpu"]) else "cuda"
|
| 45 |
+
)
|
| 46 |
+
if "cuda" in device_map or "cpu" in device_map:
|
| 47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
+
model_name,
|
| 49 |
+
torch_dtype="auto" if device_map == "cuda" else torch.float32,
|
| 50 |
+
config=config,
|
| 51 |
+
ignore_mismatched_sizes=True,
|
| 52 |
+
trust_remote_code=True,
|
| 53 |
+
token=self.token
|
| 54 |
+
).to(device_map)
|
| 55 |
+
else:
|
| 56 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 57 |
+
model_name,
|
| 58 |
+
device_map=device_map,
|
| 59 |
+
torch_dtype="auto",
|
| 60 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 61 |
+
offload_folder="/tmp/offload",
|
| 62 |
+
offload_state_dict=True,
|
| 63 |
+
cache_dir="/tmp/cache",
|
| 64 |
+
use_auth_token=use_auth_token,
|
| 65 |
+
trust_remote_code=True,
|
| 66 |
+
token=self.token
|
| 67 |
+
)
|
| 68 |
+
self.tokenizer = tokenizer
|
| 69 |
+
self.model = model
|
| 70 |
+
self.context_idxs = []
|
| 71 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 72 |
+
|
| 73 |
+
def get_ppl(
|
| 74 |
+
self,
|
| 75 |
+
text: str,
|
| 76 |
+
granularity: str = "sentence",
|
| 77 |
+
input_ids=None,
|
| 78 |
+
attention_mask=None,
|
| 79 |
+
past_key_values=None,
|
| 80 |
+
return_kv=False,
|
| 81 |
+
end=None,
|
| 82 |
+
condition_mode: str = "none",
|
| 83 |
+
condition_pos_id: int = 0,
|
| 84 |
+
):
|
| 85 |
+
if input_ids is None:
|
| 86 |
+
tokenized_text = self.tokenizer(text, return_tensors="pt")
|
| 87 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
| 88 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
| 89 |
+
if past_key_values is not None:
|
| 90 |
+
past_length = past_key_values[0][0].shape[2]
|
| 91 |
+
else:
|
| 92 |
+
past_length = 0
|
| 93 |
+
if end is None:
|
| 94 |
+
end = input_ids.shape[1]
|
| 95 |
+
end = min(end, past_length + self.max_position_embeddings)
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
response = self.model(
|
| 98 |
+
input_ids[:, past_length:end],
|
| 99 |
+
attention_mask=attention_mask[:, :end],
|
| 100 |
+
past_key_values=past_key_values,
|
| 101 |
+
use_cache=True,
|
| 102 |
+
)
|
| 103 |
+
past_key_values = response.past_key_values
|
| 104 |
+
|
| 105 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
| 106 |
+
shift_logits = response.logits[..., :-1, :].contiguous()
|
| 107 |
+
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
|
| 108 |
+
# Flatten the tokens
|
| 109 |
+
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
|
| 110 |
+
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
|
| 111 |
+
active_labels = shift_labels.view(-1)[active]
|
| 112 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
| 113 |
+
loss = loss_fct(active_logits, active_labels)
|
| 114 |
+
if condition_mode == "before":
|
| 115 |
+
loss = loss[:condition_pos_id]
|
| 116 |
+
elif condition_mode == "after":
|
| 117 |
+
loss = loss[condition_pos_id:]
|
| 118 |
+
res = loss.mean() if granularity == "sentence" else loss
|
| 119 |
+
return (res, past_key_values) if return_kv else res
|
| 120 |
+
|
| 121 |
+
def __call__(self, *args, **kwargs):
|
| 122 |
+
return self.compress(*args, **kwargs)
|
| 123 |
+
|
| 124 |
+
def compress(
|
| 125 |
+
self,
|
| 126 |
+
context: List[str],
|
| 127 |
+
instruction: str = "",
|
| 128 |
+
question: str = "",
|
| 129 |
+
ratio: float = 0.5,
|
| 130 |
+
target_token: float = -1,
|
| 131 |
+
iterative_size: int = 200,
|
| 132 |
+
force_context_ids: List[int] = None,
|
| 133 |
+
force_context_number: int = None,
|
| 134 |
+
use_sentence_level_filter: bool = False,
|
| 135 |
+
use_context_level_filter: bool = True,
|
| 136 |
+
use_token_level_filter: bool = True,
|
| 137 |
+
keep_split: bool = False,
|
| 138 |
+
keep_first_sentence: int = 0,
|
| 139 |
+
keep_last_sentence: int = 0,
|
| 140 |
+
keep_sentence_number: int = 0,
|
| 141 |
+
high_priority_bonus: int = 100,
|
| 142 |
+
context_budget: str = "+100",
|
| 143 |
+
token_budget_ratio: float = 1.4,
|
| 144 |
+
condition_in_question: str = "none",
|
| 145 |
+
reorder_context: str = "original",
|
| 146 |
+
dynamic_context_compression_ratio: float = 0.0,
|
| 147 |
+
condition_compare: bool = False,
|
| 148 |
+
add_instruction: bool = False,
|
| 149 |
+
rank_method: str = "llmlingua",
|
| 150 |
+
concate_question: bool = True,
|
| 151 |
+
):
|
| 152 |
+
if isinstance(context, str):
|
| 153 |
+
context = [context]
|
| 154 |
+
assert not (
|
| 155 |
+
rank_method == "longllmlingua" and not question
|
| 156 |
+
), "In the LongLLMLingua, it is necessary to set a question."
|
| 157 |
+
if condition_compare and "_condition" not in condition_in_question:
|
| 158 |
+
condition_in_question += "_condition"
|
| 159 |
+
if rank_method == "longllmlingua":
|
| 160 |
+
if condition_in_question == "none":
|
| 161 |
+
condition_in_question = "after"
|
| 162 |
+
elif rank_method == "llmlingua":
|
| 163 |
+
condition_in_question = (
|
| 164 |
+
"none"
|
| 165 |
+
if "_condition" not in condition_in_question
|
| 166 |
+
else "none_condition"
|
| 167 |
+
)
|
| 168 |
+
origin_tokens = len(
|
| 169 |
+
encoding.encode("\n\n".join([instruction] + context + [question]).strip())
|
| 170 |
+
)
|
| 171 |
+
context_tokens_length = [self.get_token_length(c) for c in context]
|
| 172 |
+
instruction_tokens_length, question_tokens_length = self.get_token_length(
|
| 173 |
+
instruction
|
| 174 |
+
), self.get_token_length(question)
|
| 175 |
+
if target_token == -1:
|
| 176 |
+
target_token = (
|
| 177 |
+
(
|
| 178 |
+
instruction_tokens_length
|
| 179 |
+
+ question_tokens_length
|
| 180 |
+
+ sum(context_tokens_length)
|
| 181 |
+
)
|
| 182 |
+
* (1 - ratio)
|
| 183 |
+
- instruction_tokens_length
|
| 184 |
+
- (question_tokens_length if concate_question else 0)
|
| 185 |
+
)
|
| 186 |
+
condition_flag = "_condition" in condition_in_question
|
| 187 |
+
condition_in_question = condition_in_question.replace("_condition", "")
|
| 188 |
+
|
| 189 |
+
if len(context) > 1 and use_context_level_filter:
|
| 190 |
+
context, dynamic_ratio = self.control_context_budget(
|
| 191 |
+
context,
|
| 192 |
+
context_tokens_length,
|
| 193 |
+
target_token,
|
| 194 |
+
force_context_ids,
|
| 195 |
+
force_context_number,
|
| 196 |
+
question,
|
| 197 |
+
condition_in_question,
|
| 198 |
+
reorder_context=reorder_context,
|
| 199 |
+
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
|
| 200 |
+
rank_method=rank_method,
|
| 201 |
+
context_budget=context_budget,
|
| 202 |
+
)
|
| 203 |
+
else:
|
| 204 |
+
dynamic_ratio = [0.0] * len(context)
|
| 205 |
+
|
| 206 |
+
if use_sentence_level_filter:
|
| 207 |
+
context = self.control_sentence_budget(
|
| 208 |
+
context,
|
| 209 |
+
target_token,
|
| 210 |
+
keep_first_sentence=keep_first_sentence,
|
| 211 |
+
keep_last_sentence=keep_last_sentence,
|
| 212 |
+
keep_sentence_number=keep_sentence_number,
|
| 213 |
+
high_priority_bonus=high_priority_bonus,
|
| 214 |
+
token_budget_ratio=token_budget_ratio,
|
| 215 |
+
question=question,
|
| 216 |
+
condition_in_question=condition_in_question,
|
| 217 |
+
rank_method=rank_method,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if condition_flag:
|
| 221 |
+
if add_instruction:
|
| 222 |
+
context = [question + "\n\n" + instruction] + context
|
| 223 |
+
start = self.get_token_length(question + "\n\n" + instruction) + 2
|
| 224 |
+
else:
|
| 225 |
+
context = [question] + context
|
| 226 |
+
start = self.get_token_length(question) + 2
|
| 227 |
+
else:
|
| 228 |
+
start = 0
|
| 229 |
+
|
| 230 |
+
if use_token_level_filter:
|
| 231 |
+
context = self.iterative_compress_prompt(
|
| 232 |
+
context,
|
| 233 |
+
target_token,
|
| 234 |
+
iterative_size=iterative_size,
|
| 235 |
+
keep_split=keep_split,
|
| 236 |
+
start=start,
|
| 237 |
+
dynamic_ratio=dynamic_ratio,
|
| 238 |
+
condition_compare=condition_compare,
|
| 239 |
+
)
|
| 240 |
+
compressed_prompt = (
|
| 241 |
+
self.tokenizer.batch_decode(context[0])[0]
|
| 242 |
+
.replace("<s> ", "")
|
| 243 |
+
.replace("<s>", "")
|
| 244 |
+
)
|
| 245 |
+
else:
|
| 246 |
+
compressed_prompt = "\n\n".join(context)
|
| 247 |
+
|
| 248 |
+
if instruction:
|
| 249 |
+
compressed_prompt = instruction + "\n\n" + compressed_prompt
|
| 250 |
+
if question and concate_question:
|
| 251 |
+
compressed_prompt = compressed_prompt + "\n\n" + question
|
| 252 |
+
|
| 253 |
+
compressed_tokens = len(encoding.encode(compressed_prompt))
|
| 254 |
+
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
|
| 255 |
+
return {
|
| 256 |
+
"compressed_prompt": compressed_prompt,
|
| 257 |
+
"origin_tokens": origin_tokens,
|
| 258 |
+
"compressed_tokens": compressed_tokens,
|
| 259 |
+
# "ratio": f"{origin_tokens/compressed_tokens:.1f}x",
|
| 260 |
+
"ratio": compressed_tokens / origin_tokens,
|
| 261 |
+
# "saving": f", Saving ${saving:.1f} in GPT-4.",
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
def get_token_length(self, text: str, add_special_tokens: bool = True):
|
| 265 |
+
return len(
|
| 266 |
+
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
def get_condition_ppl(
|
| 270 |
+
self,
|
| 271 |
+
text: str,
|
| 272 |
+
question: str,
|
| 273 |
+
condition_in_question: str = "none",
|
| 274 |
+
granularity: str = "sentence",
|
| 275 |
+
):
|
| 276 |
+
if condition_in_question == "none":
|
| 277 |
+
return self.get_ppl(text, granularity=granularity)
|
| 278 |
+
elif condition_in_question == "before":
|
| 279 |
+
return self.get_ppl(
|
| 280 |
+
question + text,
|
| 281 |
+
granularity=granularity,
|
| 282 |
+
condition_mode="after",
|
| 283 |
+
condition_pos_id=self.get_token_length(question) - 1,
|
| 284 |
+
)
|
| 285 |
+
elif condition_in_question == "after":
|
| 286 |
+
return self.get_ppl(
|
| 287 |
+
text + question,
|
| 288 |
+
granularity=granularity,
|
| 289 |
+
condition_mode="after",
|
| 290 |
+
condition_pos_id=self.get_token_length(text) - 1,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
def get_dynamic_compression_ratio(
|
| 294 |
+
self,
|
| 295 |
+
context: list,
|
| 296 |
+
target_token: float,
|
| 297 |
+
iterative_size: int,
|
| 298 |
+
dynamic_ratio: list,
|
| 299 |
+
start: int,
|
| 300 |
+
):
|
| 301 |
+
def get_ratio(base: float, delta: float):
|
| 302 |
+
return max(min(1, base + delta), 0)
|
| 303 |
+
|
| 304 |
+
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
|
| 305 |
+
if start:
|
| 306 |
+
context_length = context_length[1:]
|
| 307 |
+
tau = target_token / (sum(context_length) + 1)
|
| 308 |
+
res, idx, last, last_target = [], 0, 1, []
|
| 309 |
+
while idx < len(context_length):
|
| 310 |
+
if last + context_length[idx] >= iterative_size:
|
| 311 |
+
last_target.append(
|
| 312 |
+
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
|
| 313 |
+
)
|
| 314 |
+
res.append(last_target)
|
| 315 |
+
last = last + context_length[idx] - iterative_size
|
| 316 |
+
if last > iterative_size:
|
| 317 |
+
k = last // iterative_size
|
| 318 |
+
res.extend(
|
| 319 |
+
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
|
| 320 |
+
)
|
| 321 |
+
last -= k * iterative_size
|
| 322 |
+
|
| 323 |
+
last_target = (
|
| 324 |
+
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
|
| 325 |
+
)
|
| 326 |
+
else:
|
| 327 |
+
last += context_length[idx]
|
| 328 |
+
last_target.append(
|
| 329 |
+
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
|
| 330 |
+
)
|
| 331 |
+
idx += 1
|
| 332 |
+
if last_target:
|
| 333 |
+
res.append(last_target)
|
| 334 |
+
return res
|
| 335 |
+
|
| 336 |
+
def control_context_budget(
|
| 337 |
+
self,
|
| 338 |
+
context: List[str],
|
| 339 |
+
context_tokens_length: List[int],
|
| 340 |
+
target_token: float,
|
| 341 |
+
force_context_ids: List[int] = None,
|
| 342 |
+
force_context_number: int = None,
|
| 343 |
+
question: str = "",
|
| 344 |
+
condition_in_question: str = "none",
|
| 345 |
+
reorder_context: str = "original",
|
| 346 |
+
dynamic_context_compression_ratio: float = 0.0,
|
| 347 |
+
rank_method: str = "longllmlingua",
|
| 348 |
+
context_budget: str = "+100",
|
| 349 |
+
):
|
| 350 |
+
if force_context_ids is not None:
|
| 351 |
+
return [context[ii] for ii in force_context_ids]
|
| 352 |
+
demostrations_sort = self.get_rank_results(
|
| 353 |
+
context,
|
| 354 |
+
question,
|
| 355 |
+
rank_method,
|
| 356 |
+
condition_in_question,
|
| 357 |
+
context_tokens_length,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
if target_token < 0:
|
| 361 |
+
target_token = 100
|
| 362 |
+
target_token = eval("target_token" + context_budget)
|
| 363 |
+
res = []
|
| 364 |
+
used = force_context_ids if force_context_ids is not None else []
|
| 365 |
+
|
| 366 |
+
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
|
| 367 |
+
for idx, _ in demostrations_sort:
|
| 368 |
+
if idx >= len(context_tokens_length):
|
| 369 |
+
continue
|
| 370 |
+
target_token -= context_tokens_length[idx]
|
| 371 |
+
if idx not in used:
|
| 372 |
+
used.append(idx)
|
| 373 |
+
if target_token < 0 or (
|
| 374 |
+
force_context_number is not None and len(res) >= force_context_number
|
| 375 |
+
):
|
| 376 |
+
break
|
| 377 |
+
original_used = used
|
| 378 |
+
if reorder_context == "original":
|
| 379 |
+
used = sorted(used)
|
| 380 |
+
elif reorder_context == "two_stage":
|
| 381 |
+
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
|
| 382 |
+
_ for idx, _ in enumerate(used) if idx % 2 == 1
|
| 383 |
+
]
|
| 384 |
+
used = l + r[::-1]
|
| 385 |
+
|
| 386 |
+
if dynamic_context_compression_ratio > 0:
|
| 387 |
+
N = len(used)
|
| 388 |
+
if condition_in_question:
|
| 389 |
+
rank = [
|
| 390 |
+
i
|
| 391 |
+
for i, _ in self.get_rank_results(
|
| 392 |
+
context,
|
| 393 |
+
question,
|
| 394 |
+
"longllmlingua",
|
| 395 |
+
"after",
|
| 396 |
+
context_tokens_length,
|
| 397 |
+
)
|
| 398 |
+
]
|
| 399 |
+
used = sorted(used, key=lambda x: rank.index(x))
|
| 400 |
+
dynamic_ratio = [
|
| 401 |
+
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
|
| 402 |
+
for i in range(-(N - 1), N, 2)
|
| 403 |
+
][::-1]
|
| 404 |
+
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
|
| 405 |
+
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
|
| 406 |
+
else:
|
| 407 |
+
dynamic_ratio = [0.0] * len(used)
|
| 408 |
+
|
| 409 |
+
res = [context[idx] for idx in used if idx < len(context)]
|
| 410 |
+
return res, dynamic_ratio
|
| 411 |
+
|
| 412 |
+
def control_sentence_budget(
|
| 413 |
+
self,
|
| 414 |
+
context: List[str],
|
| 415 |
+
target_token: float,
|
| 416 |
+
keep_first_sentence: int = 0,
|
| 417 |
+
keep_last_sentence: int = 0,
|
| 418 |
+
keep_sentence_number: int = 0,
|
| 419 |
+
high_priority_bonus: int = 100,
|
| 420 |
+
token_budget_ratio: float = 1.4,
|
| 421 |
+
question: str = "",
|
| 422 |
+
condition_in_question: str = "none",
|
| 423 |
+
rank_method: str = "longllmlingua",
|
| 424 |
+
):
|
| 425 |
+
def keep_sentence(dem_idx: int, sent_keep: int):
|
| 426 |
+
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
|
| 427 |
+
for idx in idxs:
|
| 428 |
+
sentence_ppl[idx] += high_priority_bonus
|
| 429 |
+
|
| 430 |
+
sentences = [nltk.sent_tokenize(c) for c in context]
|
| 431 |
+
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
|
| 432 |
+
for idx_d, s in enumerate(sentences):
|
| 433 |
+
for _ in s:
|
| 434 |
+
dem_g[idx_d].add(idx)
|
| 435 |
+
s2de[idx] = idx_d
|
| 436 |
+
idx += 1
|
| 437 |
+
|
| 438 |
+
context_sentences = [s for ii in sentences for s in ii]
|
| 439 |
+
sentence_tokens_length = [
|
| 440 |
+
self.get_token_length(sentence) for sentence in context_sentences
|
| 441 |
+
]
|
| 442 |
+
N = len(context_sentences)
|
| 443 |
+
flags = list(range(len(context_sentences)))
|
| 444 |
+
if len(sentence_tokens_length) == 1:
|
| 445 |
+
return context
|
| 446 |
+
if rank_method == "longllmlingua":
|
| 447 |
+
sentence_ppl = [
|
| 448 |
+
self.get_condition_ppl(sentence, question, condition_in_question)
|
| 449 |
+
.cpu()
|
| 450 |
+
.numpy()
|
| 451 |
+
.item()
|
| 452 |
+
for sentence in context_sentences
|
| 453 |
+
]
|
| 454 |
+
if keep_first_sentence:
|
| 455 |
+
sentence_ppl[:keep_first_sentence] = [
|
| 456 |
+
ii + high_priority_bonus
|
| 457 |
+
for ii in sentence_ppl[:keep_first_sentence]
|
| 458 |
+
]
|
| 459 |
+
if keep_last_sentence:
|
| 460 |
+
sentence_ppl[-keep_last_sentence:] = [
|
| 461 |
+
ii + high_priority_bonus
|
| 462 |
+
for ii in sentence_ppl[-keep_last_sentence:]
|
| 463 |
+
]
|
| 464 |
+
if keep_sentence_number:
|
| 465 |
+
for dem_idx in range(len(sentences)):
|
| 466 |
+
keep_sentence(dem_idx, keep_sentence_number)
|
| 467 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
| 468 |
+
sent_sort = sorted(
|
| 469 |
+
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
sent_sort = self.get_rank_results(
|
| 473 |
+
context_sentences,
|
| 474 |
+
question,
|
| 475 |
+
rank_method,
|
| 476 |
+
condition_in_question,
|
| 477 |
+
[0] * len(context_sentences),
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
sentence_flags = [False] * N
|
| 481 |
+
if target_token < 0:
|
| 482 |
+
target_token = 100
|
| 483 |
+
target_token *= token_budget_ratio
|
| 484 |
+
res = []
|
| 485 |
+
for idx, _ in sent_sort:
|
| 486 |
+
idx = flags[idx]
|
| 487 |
+
target_token -= sentence_tokens_length[idx]
|
| 488 |
+
sentence_flags[idx] = True
|
| 489 |
+
if target_token < 0:
|
| 490 |
+
break
|
| 491 |
+
idx = 0
|
| 492 |
+
res = []
|
| 493 |
+
for s in sentences:
|
| 494 |
+
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
|
| 495 |
+
res.append("\n".join(tmp))
|
| 496 |
+
idx += len(s)
|
| 497 |
+
return res
|
| 498 |
+
|
| 499 |
+
def get_compressed_input(
|
| 500 |
+
self,
|
| 501 |
+
loss,
|
| 502 |
+
input_ids,
|
| 503 |
+
attention_mask,
|
| 504 |
+
end=200,
|
| 505 |
+
iterative_size=200,
|
| 506 |
+
threshold=0.5,
|
| 507 |
+
keep_flag=None,
|
| 508 |
+
split_token_id: int = 13,
|
| 509 |
+
start: int = 0,
|
| 510 |
+
self_loss=None,
|
| 511 |
+
self_input_ids=None,
|
| 512 |
+
self_attention_mask=None,
|
| 513 |
+
):
|
| 514 |
+
if self_loss is not None:
|
| 515 |
+
need_idx = torch.concat(
|
| 516 |
+
[
|
| 517 |
+
loss[:start] > 0,
|
| 518 |
+
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
|
| 519 |
+
loss[:1] > 0,
|
| 520 |
+
]
|
| 521 |
+
)
|
| 522 |
+
else:
|
| 523 |
+
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
|
| 524 |
+
need_idx[end:] = 1
|
| 525 |
+
need_idx[: end - iterative_size] = 1
|
| 526 |
+
loss = loss[need_idx[:-1]]
|
| 527 |
+
if self_loss is not None:
|
| 528 |
+
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
|
| 529 |
+
need_idx = torch.cat(
|
| 530 |
+
[
|
| 531 |
+
need_idx,
|
| 532 |
+
torch.ones(
|
| 533 |
+
self_loss.shape[0] - need_idx.shape[0] + start + 1,
|
| 534 |
+
dtype=torch.bool,
|
| 535 |
+
).to(need_idx.device),
|
| 536 |
+
]
|
| 537 |
+
)
|
| 538 |
+
self_loss = self_loss[need_idx[start:-1]]
|
| 539 |
+
|
| 540 |
+
if need_idx.shape[0] < input_ids.shape[1]:
|
| 541 |
+
need_idx = torch.cat(
|
| 542 |
+
[
|
| 543 |
+
need_idx,
|
| 544 |
+
torch.ones(
|
| 545 |
+
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
|
| 546 |
+
).to(need_idx.device),
|
| 547 |
+
]
|
| 548 |
+
)
|
| 549 |
+
elif need_idx.shape[0] > input_ids.shape[1]:
|
| 550 |
+
need_idx = need_idx[: input_ids.shape[1]]
|
| 551 |
+
|
| 552 |
+
if keep_flag is not None:
|
| 553 |
+
need_idx[keep_flag == 1] = 1
|
| 554 |
+
last = -1
|
| 555 |
+
if keep_flag is not None:
|
| 556 |
+
for ii in range(end - iterative_size, end):
|
| 557 |
+
if need_idx[ii] != 1:
|
| 558 |
+
continue
|
| 559 |
+
now = input_ids[0][ii].detach().cpu().item()
|
| 560 |
+
if (
|
| 561 |
+
now == split_token_id
|
| 562 |
+
and last == split_token_id
|
| 563 |
+
and keep_flag[ii].detach().cpu().item() == 0
|
| 564 |
+
):
|
| 565 |
+
need_idx[ii] = 0
|
| 566 |
+
else:
|
| 567 |
+
last = now
|
| 568 |
+
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
|
| 569 |
+
compressed_attention_mask = attention_mask[attention_mask == 1][
|
| 570 |
+
need_idx
|
| 571 |
+
].unsqueeze(0)
|
| 572 |
+
|
| 573 |
+
if self_loss is not None:
|
| 574 |
+
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
|
| 575 |
+
need_idx[start:]
|
| 576 |
+
].unsqueeze(0)
|
| 577 |
+
self_compressed_attention_mask = self_attention_mask[
|
| 578 |
+
self_attention_mask == 1
|
| 579 |
+
][need_idx[start:]].unsqueeze(0)
|
| 580 |
+
else:
|
| 581 |
+
self_compressed_input_ids, self_compressed_attention_mask = None, None
|
| 582 |
+
if keep_flag is not None:
|
| 583 |
+
if len(keep_flag) > len(need_idx):
|
| 584 |
+
keep_flag = torch.cat(
|
| 585 |
+
[
|
| 586 |
+
keep_flag[:start],
|
| 587 |
+
keep_flag[start : len(need_idx) + start][need_idx],
|
| 588 |
+
keep_flag[start + len(need_idx) :],
|
| 589 |
+
]
|
| 590 |
+
)
|
| 591 |
+
else:
|
| 592 |
+
keep_flag = keep_flag[need_idx]
|
| 593 |
+
end -= (need_idx[:end] == 0).sum()
|
| 594 |
+
return (
|
| 595 |
+
compressed_input_ids,
|
| 596 |
+
compressed_attention_mask,
|
| 597 |
+
keep_flag,
|
| 598 |
+
end,
|
| 599 |
+
loss,
|
| 600 |
+
self_loss,
|
| 601 |
+
self_compressed_input_ids,
|
| 602 |
+
self_compressed_attention_mask,
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
def get_estimate_threshold_base_distribution(
|
| 606 |
+
self, ppl, ratio: float, condition_flag: bool = False
|
| 607 |
+
):
|
| 608 |
+
ppl = ppl[ppl != 10000]
|
| 609 |
+
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
|
| 610 |
+
return (
|
| 611 |
+
ppl.sort(descending=not condition_flag)
|
| 612 |
+
.values[target_token]
|
| 613 |
+
.detach()
|
| 614 |
+
.cpu()
|
| 615 |
+
.item()
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
def iterative_compress_prompt(
|
| 619 |
+
self,
|
| 620 |
+
context: List[str],
|
| 621 |
+
target_token: float,
|
| 622 |
+
iterative_size: int = 200,
|
| 623 |
+
keep_split: bool = False,
|
| 624 |
+
split_token_id: int = 13,
|
| 625 |
+
start: int = 0,
|
| 626 |
+
dynamic_ratio: list = None,
|
| 627 |
+
condition_compare: bool = False,
|
| 628 |
+
):
|
| 629 |
+
iterative_ratios = self.get_dynamic_compression_ratio(
|
| 630 |
+
context, target_token, iterative_size, dynamic_ratio, start
|
| 631 |
+
)
|
| 632 |
+
context = "\n\n".join(context)
|
| 633 |
+
tokenized_text = self.tokenizer(context, return_tensors="pt")
|
| 634 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
| 635 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
| 636 |
+
|
| 637 |
+
N = (attention_mask == 1).sum()
|
| 638 |
+
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
|
| 639 |
+
if condition_compare:
|
| 640 |
+
self_input_ids, self_attention_mask = (
|
| 641 |
+
input_ids[:, start:],
|
| 642 |
+
attention_mask[:, start:],
|
| 643 |
+
)
|
| 644 |
+
self_compressed_input_ids, self_compressed_attention_mask = (
|
| 645 |
+
self_input_ids,
|
| 646 |
+
self_attention_mask,
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
end = min(iterative_size + start, compressed_input_ids.shape[1])
|
| 650 |
+
threshold, keep_flag = None, None
|
| 651 |
+
if keep_split:
|
| 652 |
+
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
|
| 653 |
+
N = len(input_ids_numpy)
|
| 654 |
+
keep_flag = [
|
| 655 |
+
int(
|
| 656 |
+
(
|
| 657 |
+
ii > 0
|
| 658 |
+
and input_ids_numpy[ii] == split_token_id
|
| 659 |
+
and input_ids_numpy[ii - 1] == split_token_id
|
| 660 |
+
)
|
| 661 |
+
or (
|
| 662 |
+
ii < N - 1
|
| 663 |
+
and input_ids_numpy[ii] == split_token_id
|
| 664 |
+
and input_ids_numpy[ii + 1] == split_token_id
|
| 665 |
+
)
|
| 666 |
+
)
|
| 667 |
+
for ii in range(N)
|
| 668 |
+
]
|
| 669 |
+
keep_flag = torch.tensor(keep_flag).to(self.device)
|
| 670 |
+
past_key_values, past_loss, ready_end = None, None, 0
|
| 671 |
+
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
|
| 672 |
+
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
|
| 673 |
+
idx = 0
|
| 674 |
+
while end <= compressed_input_ids.shape[1]:
|
| 675 |
+
if end > self.max_position_embeddings and past_key_values is not None:
|
| 676 |
+
# KV-Cache Compression
|
| 677 |
+
e, s = end - self.max_position_embeddings, self.cache_bos_num
|
| 678 |
+
if pop_compressed_input_ids is None:
|
| 679 |
+
pop_compressed_input_ids = compressed_input_ids[:, :e]
|
| 680 |
+
else:
|
| 681 |
+
pop_compressed_input_ids = torch.cat(
|
| 682 |
+
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
|
| 683 |
+
)
|
| 684 |
+
compressed_input_ids = compressed_input_ids[:, e:]
|
| 685 |
+
compressed_attention_mask = compressed_attention_mask[:, e:]
|
| 686 |
+
past_key_values = [
|
| 687 |
+
[
|
| 688 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
| 689 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
| 690 |
+
]
|
| 691 |
+
for k, v in past_key_values
|
| 692 |
+
]
|
| 693 |
+
end, ready_end = end - e, ready_end - e
|
| 694 |
+
if condition_compare:
|
| 695 |
+
self_ready_end -= e
|
| 696 |
+
if pop_self_compressed_input_ids is None:
|
| 697 |
+
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
|
| 698 |
+
else:
|
| 699 |
+
pop_self_compressed_input_ids = torch.cat(
|
| 700 |
+
[
|
| 701 |
+
pop_self_compressed_input_ids,
|
| 702 |
+
self_compressed_input_ids[:, :e],
|
| 703 |
+
],
|
| 704 |
+
dim=-1,
|
| 705 |
+
)
|
| 706 |
+
self_compressed_input_ids = self_compressed_input_ids[:, e:]
|
| 707 |
+
self_compressed_attention_mask = self_compressed_attention_mask[
|
| 708 |
+
:, e:
|
| 709 |
+
]
|
| 710 |
+
self_past_key_values = [
|
| 711 |
+
[
|
| 712 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
| 713 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
| 714 |
+
]
|
| 715 |
+
for k, v in self_past_key_values
|
| 716 |
+
]
|
| 717 |
+
|
| 718 |
+
loss, past_key_values = self.get_ppl(
|
| 719 |
+
"",
|
| 720 |
+
"token",
|
| 721 |
+
compressed_input_ids,
|
| 722 |
+
compressed_attention_mask,
|
| 723 |
+
past_key_values=past_key_values,
|
| 724 |
+
return_kv=True,
|
| 725 |
+
end=end if idx else None,
|
| 726 |
+
)
|
| 727 |
+
if past_loss is not None:
|
| 728 |
+
if end - 1 > len(past_loss):
|
| 729 |
+
past_loss = torch.cat(
|
| 730 |
+
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
|
| 731 |
+
)
|
| 732 |
+
past_loss[ready_end : end - 1] = loss
|
| 733 |
+
loss = past_loss
|
| 734 |
+
else:
|
| 735 |
+
past_loss = loss
|
| 736 |
+
if idx:
|
| 737 |
+
past_key_values = [
|
| 738 |
+
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
|
| 739 |
+
for k, v in past_key_values
|
| 740 |
+
]
|
| 741 |
+
else:
|
| 742 |
+
past_key_values = None
|
| 743 |
+
|
| 744 |
+
if condition_compare:
|
| 745 |
+
self_loss, self_past_key_values = self.get_ppl(
|
| 746 |
+
"",
|
| 747 |
+
"token",
|
| 748 |
+
self_compressed_input_ids,
|
| 749 |
+
self_compressed_attention_mask,
|
| 750 |
+
past_key_values=self_past_key_values,
|
| 751 |
+
return_kv=True,
|
| 752 |
+
end=end - start if idx else None,
|
| 753 |
+
)
|
| 754 |
+
if self_past_loss is not None:
|
| 755 |
+
if end - start - 1 > len(self_past_loss):
|
| 756 |
+
self_past_loss = torch.cat(
|
| 757 |
+
[
|
| 758 |
+
self_past_loss,
|
| 759 |
+
torch.zeros_like(self_loss)[
|
| 760 |
+
: end - 1 - start - len(self_past_loss)
|
| 761 |
+
],
|
| 762 |
+
]
|
| 763 |
+
)
|
| 764 |
+
self_past_loss[self_ready_end : end - start - 1] = self_loss
|
| 765 |
+
self_loss = self_past_loss
|
| 766 |
+
else:
|
| 767 |
+
self_past_loss = self_loss
|
| 768 |
+
if idx:
|
| 769 |
+
self_past_key_values = [
|
| 770 |
+
[
|
| 771 |
+
k[:, :, : end - iterative_size - start],
|
| 772 |
+
v[:, :, : end - iterative_size - start],
|
| 773 |
+
]
|
| 774 |
+
for k, v in self_past_key_values
|
| 775 |
+
]
|
| 776 |
+
else:
|
| 777 |
+
self_past_key_values = None
|
| 778 |
+
|
| 779 |
+
self_ready_end = (
|
| 780 |
+
end - start - iterative_size if not (start and idx == 0) else 0
|
| 781 |
+
)
|
| 782 |
+
ready_end = end - iterative_size if not (start and idx == 0) else 0
|
| 783 |
+
|
| 784 |
+
for delta_end, ratio in iterative_ratios[idx]:
|
| 785 |
+
loss = past_loss
|
| 786 |
+
if condition_compare:
|
| 787 |
+
self_loss = self_past_loss
|
| 788 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
| 789 |
+
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
| 793 |
+
loss, ratio, False
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
(
|
| 797 |
+
compressed_input_ids,
|
| 798 |
+
compressed_attention_mask,
|
| 799 |
+
keep_flag,
|
| 800 |
+
end,
|
| 801 |
+
past_loss,
|
| 802 |
+
self_past_loss,
|
| 803 |
+
self_compressed_input_ids,
|
| 804 |
+
self_compressed_attention_mask,
|
| 805 |
+
) = self.get_compressed_input(
|
| 806 |
+
loss,
|
| 807 |
+
compressed_input_ids,
|
| 808 |
+
compressed_attention_mask,
|
| 809 |
+
end - iterative_size + delta_end,
|
| 810 |
+
iterative_size=delta_end,
|
| 811 |
+
threshold=threshold,
|
| 812 |
+
keep_flag=keep_flag,
|
| 813 |
+
split_token_id=split_token_id,
|
| 814 |
+
start=start,
|
| 815 |
+
self_loss=self_loss if condition_compare else None,
|
| 816 |
+
self_input_ids=self_compressed_input_ids
|
| 817 |
+
if condition_compare
|
| 818 |
+
else None,
|
| 819 |
+
self_attention_mask=self_compressed_attention_mask
|
| 820 |
+
if condition_compare
|
| 821 |
+
else None,
|
| 822 |
+
)
|
| 823 |
+
end += iterative_size
|
| 824 |
+
idx += 1
|
| 825 |
+
if pop_compressed_input_ids is not None:
|
| 826 |
+
compressed_input_ids = torch.cat(
|
| 827 |
+
[pop_compressed_input_ids, compressed_input_ids], dim=-1
|
| 828 |
+
)
|
| 829 |
+
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
|
| 830 |
+
|
| 831 |
+
def recover(
|
| 832 |
+
self,
|
| 833 |
+
original_prompt: str,
|
| 834 |
+
compressed_prompt: str,
|
| 835 |
+
response: str,
|
| 836 |
+
):
|
| 837 |
+
def match_from_compressed(response_word):
|
| 838 |
+
response_input_ids = self.tokenizer(
|
| 839 |
+
response_word, add_special_tokens=False
|
| 840 |
+
)["input_ids"]
|
| 841 |
+
response_set, response_c = set(response_input_ids), defaultdict(list)
|
| 842 |
+
for idx in range(M):
|
| 843 |
+
if original_input_ids[idx] in response_set:
|
| 844 |
+
response_c[original_input_ids[idx]].append(idx)
|
| 845 |
+
res, res_min, res_c = None, float("inf"), 1
|
| 846 |
+
n = len(response_input_ids)
|
| 847 |
+
for l in response_c[response_input_ids[0]]:
|
| 848 |
+
x, y, c = 0, l, 1
|
| 849 |
+
for x in range(1, n):
|
| 850 |
+
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
|
| 851 |
+
if (
|
| 852 |
+
idx >= len(response_c[response_input_ids[x]])
|
| 853 |
+
or response_c[response_input_ids[x]][idx] - y > 10
|
| 854 |
+
):
|
| 855 |
+
continue
|
| 856 |
+
c += 1
|
| 857 |
+
y = response_c[response_input_ids[x]][idx]
|
| 858 |
+
if c > res_c:
|
| 859 |
+
res_c = c
|
| 860 |
+
res_min = y - l + 1
|
| 861 |
+
res = (l, y + 1)
|
| 862 |
+
elif c == res_c and y - l + 1 < res_min:
|
| 863 |
+
res_min = y - l + 1
|
| 864 |
+
res = (l, y + 1)
|
| 865 |
+
|
| 866 |
+
if res is None:
|
| 867 |
+
return response_word
|
| 868 |
+
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
| 869 |
+
# l -= 1
|
| 870 |
+
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
| 871 |
+
# l -= 1
|
| 872 |
+
return self.tokenizer.decode(original_input_ids[res[0] : res[1]])
|
| 873 |
+
|
| 874 |
+
response_words = response.split(" ")
|
| 875 |
+
|
| 876 |
+
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
|
| 877 |
+
"input_ids"
|
| 878 |
+
]
|
| 879 |
+
N, M = len(response_words), len(original_input_ids)
|
| 880 |
+
recovered_response_words = []
|
| 881 |
+
l = 0
|
| 882 |
+
while l < N:
|
| 883 |
+
if response_words[l] not in compressed_prompt:
|
| 884 |
+
recovered_response_words.append(response_words[l])
|
| 885 |
+
l += 1
|
| 886 |
+
continue
|
| 887 |
+
r = l
|
| 888 |
+
while (
|
| 889 |
+
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
|
| 890 |
+
):
|
| 891 |
+
r += 1
|
| 892 |
+
|
| 893 |
+
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
|
| 894 |
+
recovered_response_words.append(match_words)
|
| 895 |
+
l = r + 1
|
| 896 |
+
return " ".join(recovered_response_words)
|
| 897 |
+
|
| 898 |
+
def get_rank_results(
|
| 899 |
+
self,
|
| 900 |
+
context: list,
|
| 901 |
+
question: str,
|
| 902 |
+
rank_method: str,
|
| 903 |
+
condition_in_question: str,
|
| 904 |
+
context_tokens_length: list,
|
| 905 |
+
):
|
| 906 |
+
def get_distance_bm25(corpus, query):
|
| 907 |
+
from rank_bm25 import BM25Okapi
|
| 908 |
+
|
| 909 |
+
tokenized_corpus = [doc.split(" ") for doc in corpus]
|
| 910 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
| 911 |
+
tokenized_query = query.split(" ")
|
| 912 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
| 913 |
+
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
|
| 914 |
+
return idx
|
| 915 |
+
|
| 916 |
+
def get_distance_gzip(corpus, query):
|
| 917 |
+
def get_score(x, y):
|
| 918 |
+
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
|
| 919 |
+
cxy = len(gzip.compress(f"{x} {y}".encode()))
|
| 920 |
+
return (cxy - min(cx, cy)) / max(cx, cy)
|
| 921 |
+
|
| 922 |
+
import gzip
|
| 923 |
+
|
| 924 |
+
doc_scores = [get_score(doc, query) for doc in corpus]
|
| 925 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 926 |
+
return idx
|
| 927 |
+
|
| 928 |
+
def get_distance_sentbert(corpus, query):
|
| 929 |
+
from sentence_transformers import SentenceTransformer, util
|
| 930 |
+
|
| 931 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 932 |
+
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
| 933 |
+
self.retrieval_model_name = rank_method
|
| 934 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
| 935 |
+
query = self.retrieval_model.encode(query)
|
| 936 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 937 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 938 |
+
return idx
|
| 939 |
+
|
| 940 |
+
def get_distance_openai(corpus, query):
|
| 941 |
+
import openai
|
| 942 |
+
from sentence_transformers import util
|
| 943 |
+
|
| 944 |
+
openai.api_key = self.open_api_config.get("api_key", "")
|
| 945 |
+
openai.api_base = self.open_api_config.get(
|
| 946 |
+
"api_base", "https://api.openai.com/v1"
|
| 947 |
+
)
|
| 948 |
+
openai.api_type = self.open_api_config.get("api_type", "open_ai")
|
| 949 |
+
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
|
| 950 |
+
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
|
| 951 |
+
|
| 952 |
+
def get_embed(text):
|
| 953 |
+
return openai.Embedding.create(
|
| 954 |
+
input=[text.replace("\n", " ")], engine=engine
|
| 955 |
+
)["LongBench"][0]["embedding"]
|
| 956 |
+
|
| 957 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
| 958 |
+
query = get_embed(query)
|
| 959 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 960 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 961 |
+
return idx
|
| 962 |
+
|
| 963 |
+
def get_distance_sentbert_bge(corpus, query):
|
| 964 |
+
from sentence_transformers import SentenceTransformer, util
|
| 965 |
+
|
| 966 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 967 |
+
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
| 968 |
+
self.retrieval_model_name = rank_method
|
| 969 |
+
doc_embeds = self.retrieval_model.encode(
|
| 970 |
+
[i for i in corpus], normalize_embeddings=True
|
| 971 |
+
)
|
| 972 |
+
query = self.retrieval_model.encode(query, normalize_embeddings=True)
|
| 973 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 974 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 975 |
+
return idx
|
| 976 |
+
|
| 977 |
+
def get_distance_bge_ranker(corpus, query):
|
| 978 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 979 |
+
|
| 980 |
+
pairs = [[i, query] for i in corpus]
|
| 981 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 982 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
|
| 983 |
+
model = (
|
| 984 |
+
AutoModelForSequenceClassification.from_pretrained(
|
| 985 |
+
"BAAI/bge-reranker-large"
|
| 986 |
+
)
|
| 987 |
+
.eval()
|
| 988 |
+
.to(self.device)
|
| 989 |
+
)
|
| 990 |
+
self.retrieval_model = [tokenizer, model]
|
| 991 |
+
self.retrieval_model_name = rank_method
|
| 992 |
+
with torch.no_grad():
|
| 993 |
+
inputs = self.retrieval_model[0](
|
| 994 |
+
pairs,
|
| 995 |
+
padding=True,
|
| 996 |
+
truncation=True,
|
| 997 |
+
return_tensors="pt",
|
| 998 |
+
max_length=512,
|
| 999 |
+
).to(self.device)
|
| 1000 |
+
scores = (
|
| 1001 |
+
self.retrieval_model[1](**inputs, return_dict=True)
|
| 1002 |
+
.logits.view(
|
| 1003 |
+
-1,
|
| 1004 |
+
)
|
| 1005 |
+
.float()
|
| 1006 |
+
)
|
| 1007 |
+
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
|
| 1008 |
+
return idx
|
| 1009 |
+
|
| 1010 |
+
def get_distance_bge_llmembedder(corpus, query):
|
| 1011 |
+
from transformers import AutoModel, AutoTokenizer
|
| 1012 |
+
|
| 1013 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 1014 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
|
| 1015 |
+
model = (
|
| 1016 |
+
AutoModel.from_pretrained("BAAI/llm-embedder")
|
| 1017 |
+
.eval()
|
| 1018 |
+
.to(self.device)
|
| 1019 |
+
)
|
| 1020 |
+
self.retrieval_model = [tokenizer, model]
|
| 1021 |
+
self.retrieval_model_name = rank_method
|
| 1022 |
+
|
| 1023 |
+
instruction_qa_query = (
|
| 1024 |
+
"Represent this query for retrieving relevant documents: "
|
| 1025 |
+
)
|
| 1026 |
+
instruction_qa_key = "Represent this document for retrieval: "
|
| 1027 |
+
queries = [instruction_qa_query + query for _ in corpus]
|
| 1028 |
+
keys = [instruction_qa_key + key for key in corpus]
|
| 1029 |
+
with torch.no_grad():
|
| 1030 |
+
query_inputs = self.retrieval_model[0](
|
| 1031 |
+
queries,
|
| 1032 |
+
padding=True,
|
| 1033 |
+
truncation=True,
|
| 1034 |
+
return_tensors="pt",
|
| 1035 |
+
max_length=512,
|
| 1036 |
+
).to(self.device)
|
| 1037 |
+
key_inputs = self.retrieval_model[0](
|
| 1038 |
+
keys,
|
| 1039 |
+
padding=True,
|
| 1040 |
+
truncation=True,
|
| 1041 |
+
return_tensors="pt",
|
| 1042 |
+
max_length=512,
|
| 1043 |
+
).to(self.device)
|
| 1044 |
+
query_outputs = self.retrieval_model[1](**query_inputs)
|
| 1045 |
+
key_outputs = self.retrieval_model[1](**key_inputs)
|
| 1046 |
+
# CLS pooling
|
| 1047 |
+
query_embeddings = query_outputs.last_hidden_state[:, 0]
|
| 1048 |
+
key_embeddings = key_outputs.last_hidden_state[:, 0]
|
| 1049 |
+
# Normalize
|
| 1050 |
+
query_embeddings = torch.nn.functional.normalize(
|
| 1051 |
+
query_embeddings, p=2, dim=1
|
| 1052 |
+
)
|
| 1053 |
+
key_embeddings = torch.nn.functional.normalize(
|
| 1054 |
+
key_embeddings, p=2, dim=1
|
| 1055 |
+
)
|
| 1056 |
+
similarity = query_embeddings @ key_embeddings.T
|
| 1057 |
+
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
|
| 1058 |
+
return idx
|
| 1059 |
+
|
| 1060 |
+
def get_distance_jinza(corpus, query):
|
| 1061 |
+
from numpy.linalg import norm
|
| 1062 |
+
|
| 1063 |
+
from transformers import AutoModel
|
| 1064 |
+
|
| 1065 |
+
def cos_sim(a, b):
|
| 1066 |
+
return (a @ b.T) / (norm(a) * norm(b))
|
| 1067 |
+
|
| 1068 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 1069 |
+
model = (
|
| 1070 |
+
AutoModel.from_pretrained(
|
| 1071 |
+
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
|
| 1072 |
+
)
|
| 1073 |
+
.eval()
|
| 1074 |
+
.to(self.device)
|
| 1075 |
+
)
|
| 1076 |
+
self.retrieval_model = model
|
| 1077 |
+
self.retrieval_model_name = rank_method
|
| 1078 |
+
|
| 1079 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
| 1080 |
+
query = self.retrieval_model.encode(query)
|
| 1081 |
+
doc_scores = cos_sim(doc_embeds, query)
|
| 1082 |
+
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
|
| 1083 |
+
return idx
|
| 1084 |
+
|
| 1085 |
+
def get_distance_voyageai(corpus, query):
|
| 1086 |
+
import voyageai
|
| 1087 |
+
from sentence_transformers import util
|
| 1088 |
+
|
| 1089 |
+
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
|
| 1090 |
+
|
| 1091 |
+
def get_embed(text):
|
| 1092 |
+
return voyageai.get_embedding(text, model="voyage-01")
|
| 1093 |
+
|
| 1094 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
| 1095 |
+
query = get_embed(query)
|
| 1096 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 1097 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 1098 |
+
return idx
|
| 1099 |
+
|
| 1100 |
+
def get_distance_cohere(corpus, query):
|
| 1101 |
+
import cohere
|
| 1102 |
+
|
| 1103 |
+
api_key = self.open_api_config.get("cohere_api_key", "")
|
| 1104 |
+
co = cohere.Client(api_key)
|
| 1105 |
+
results = co.rerank(
|
| 1106 |
+
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
|
| 1107 |
+
)
|
| 1108 |
+
c_map = {jj: ii for ii, jj in enumerate(corpus)}
|
| 1109 |
+
doc_rank = [c_map[ii.document["text"]] for ii in results]
|
| 1110 |
+
idx = [(ii, 0) for ii in doc_rank]
|
| 1111 |
+
return idx
|
| 1112 |
+
|
| 1113 |
+
def get_distance_longllmlingua(corpus, query):
|
| 1114 |
+
context_ppl = [
|
| 1115 |
+
self.get_condition_ppl(
|
| 1116 |
+
d,
|
| 1117 |
+
query
|
| 1118 |
+
+ " We can get the answer to this question in the given documents.",
|
| 1119 |
+
condition_in_question,
|
| 1120 |
+
)
|
| 1121 |
+
- dl * 2 / 250 * 0
|
| 1122 |
+
for d, dl in zip(corpus, context_tokens_length)
|
| 1123 |
+
]
|
| 1124 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
| 1125 |
+
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
|
| 1126 |
+
return ys
|
| 1127 |
+
|
| 1128 |
+
method = None
|
| 1129 |
+
if rank_method == "bm25":
|
| 1130 |
+
method = get_distance_bm25
|
| 1131 |
+
elif rank_method == "gzip":
|
| 1132 |
+
method = get_distance_gzip
|
| 1133 |
+
elif rank_method == "sentbert":
|
| 1134 |
+
method = get_distance_sentbert
|
| 1135 |
+
elif rank_method == "openai":
|
| 1136 |
+
method = get_distance_openai
|
| 1137 |
+
elif rank_method in ["longllmlingua", "llmlingua"]:
|
| 1138 |
+
method = get_distance_longllmlingua
|
| 1139 |
+
elif rank_method == "bge":
|
| 1140 |
+
method = get_distance_sentbert_bge
|
| 1141 |
+
elif rank_method == "bge_reranker":
|
| 1142 |
+
method = get_distance_bge_ranker
|
| 1143 |
+
elif rank_method == "bge_llmembedder":
|
| 1144 |
+
method = get_distance_bge_llmembedder
|
| 1145 |
+
elif rank_method == "jinza":
|
| 1146 |
+
method = get_distance_jinza
|
| 1147 |
+
elif rank_method == "voyageai":
|
| 1148 |
+
method = get_distance_voyageai
|
| 1149 |
+
elif rank_method == "cohere":
|
| 1150 |
+
method = get_distance_cohere
|
| 1151 |
+
return method(context, question)
|
| 1152 |
+
|
longlingua_compressor.py
ADDED
|
@@ -0,0 +1,1150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from llmlingua import PromptCompressor
|
| 2 |
+
import bisect
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
import nltk
|
| 10 |
+
import tiktoken
|
| 11 |
+
import re
|
| 12 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
from abs_compressor import AbstractCompressor
|
| 15 |
+
|
| 16 |
+
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
|
| 17 |
+
|
| 18 |
+
class LongLLMLinguaCompressor(AbstractCompressor):
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
| 22 |
+
device_map: str = "cuda",
|
| 23 |
+
use_auth_token: bool = False,
|
| 24 |
+
open_api_config: dict = {},
|
| 25 |
+
):
|
| 26 |
+
self.load_model(model_name, device_map, use_auth_token)
|
| 27 |
+
self.retrieval_model = None
|
| 28 |
+
self.retrieval_model_name = None
|
| 29 |
+
self.open_api_config = open_api_config
|
| 30 |
+
self.cache_bos_num = 10
|
| 31 |
+
|
| 32 |
+
def load_model(
|
| 33 |
+
self, model_name: str, device_map: str = "cuda", use_auth_token: bool = False
|
| 34 |
+
):
|
| 35 |
+
config = AutoConfig.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
| 37 |
+
tokenizer.padding_side = "left"
|
| 38 |
+
tokenizer.pad_token_id = (
|
| 39 |
+
config.pad_token_id if config.pad_token_id else tokenizer.eos_token_id
|
| 40 |
+
)
|
| 41 |
+
self.device = (
|
| 42 |
+
device_map if any(key in device_map for key in ["cuda", "cpu"]) else "cuda"
|
| 43 |
+
)
|
| 44 |
+
if "cuda" in device_map or "cpu" in device_map:
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
model_name,
|
| 47 |
+
torch_dtype="auto" if device_map == "cuda" else torch.float32,
|
| 48 |
+
config=config,
|
| 49 |
+
ignore_mismatched_sizes=True,
|
| 50 |
+
trust_remote_code=True,
|
| 51 |
+
token="Your Token here"
|
| 52 |
+
).to(device_map)
|
| 53 |
+
else:
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
+
model_name,
|
| 56 |
+
device_map=device_map,
|
| 57 |
+
torch_dtype="auto",
|
| 58 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 59 |
+
offload_folder="/tmp/offload",
|
| 60 |
+
offload_state_dict=True,
|
| 61 |
+
cache_dir="/tmp/cache",
|
| 62 |
+
use_auth_token=use_auth_token,
|
| 63 |
+
trust_remote_code=True,
|
| 64 |
+
token="Your Token here"
|
| 65 |
+
)
|
| 66 |
+
self.tokenizer = tokenizer
|
| 67 |
+
self.model = model
|
| 68 |
+
self.context_idxs = []
|
| 69 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 70 |
+
|
| 71 |
+
def get_ppl(
|
| 72 |
+
self,
|
| 73 |
+
text: str,
|
| 74 |
+
granularity: str = "sentence",
|
| 75 |
+
input_ids=None,
|
| 76 |
+
attention_mask=None,
|
| 77 |
+
past_key_values=None,
|
| 78 |
+
return_kv=False,
|
| 79 |
+
end=None,
|
| 80 |
+
condition_mode: str = "none",
|
| 81 |
+
condition_pos_id: int = 0,
|
| 82 |
+
):
|
| 83 |
+
if input_ids is None:
|
| 84 |
+
tokenized_text = self.tokenizer(text, return_tensors="pt")
|
| 85 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
| 86 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
| 87 |
+
if past_key_values is not None:
|
| 88 |
+
past_length = past_key_values[0][0].shape[2]
|
| 89 |
+
else:
|
| 90 |
+
past_length = 0
|
| 91 |
+
if end is None:
|
| 92 |
+
end = input_ids.shape[1]
|
| 93 |
+
end = min(end, past_length + self.max_position_embeddings)
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
response = self.model(
|
| 96 |
+
input_ids[:, past_length:end],
|
| 97 |
+
attention_mask=attention_mask[:, :end],
|
| 98 |
+
past_key_values=past_key_values,
|
| 99 |
+
use_cache=True,
|
| 100 |
+
)
|
| 101 |
+
past_key_values = response.past_key_values
|
| 102 |
+
|
| 103 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
| 104 |
+
shift_logits = response.logits[..., :-1, :].contiguous()
|
| 105 |
+
shift_labels = input_ids[..., past_length + 1 : end].contiguous()
|
| 106 |
+
# Flatten the tokens
|
| 107 |
+
active = (attention_mask[:, past_length:end] == 1)[..., :-1].view(-1)
|
| 108 |
+
active_logits = shift_logits.view(-1, shift_logits.size(-1))[active]
|
| 109 |
+
active_labels = shift_labels.view(-1)[active]
|
| 110 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
| 111 |
+
loss = loss_fct(active_logits, active_labels)
|
| 112 |
+
if condition_mode == "before":
|
| 113 |
+
loss = loss[:condition_pos_id]
|
| 114 |
+
elif condition_mode == "after":
|
| 115 |
+
loss = loss[condition_pos_id:]
|
| 116 |
+
res = loss.mean() if granularity == "sentence" else loss
|
| 117 |
+
return (res, past_key_values) if return_kv else res
|
| 118 |
+
|
| 119 |
+
def __call__(self, *args, **kwargs):
|
| 120 |
+
return self.compress(*args, **kwargs)
|
| 121 |
+
|
| 122 |
+
def compress(
|
| 123 |
+
self,
|
| 124 |
+
context: List[str],
|
| 125 |
+
instruction: str = "",
|
| 126 |
+
question: str = " ",
|
| 127 |
+
ratio: float = 0.5,
|
| 128 |
+
target_token: float = -1,
|
| 129 |
+
iterative_size: int = 200,
|
| 130 |
+
force_context_ids: List[int] = None,
|
| 131 |
+
force_context_number: int = None,
|
| 132 |
+
use_sentence_level_filter: bool = False,
|
| 133 |
+
use_context_level_filter: bool = True,
|
| 134 |
+
use_token_level_filter: bool = True,
|
| 135 |
+
keep_split: bool = False,
|
| 136 |
+
keep_first_sentence: int = 0,
|
| 137 |
+
keep_last_sentence: int = 0,
|
| 138 |
+
keep_sentence_number: int = 0,
|
| 139 |
+
high_priority_bonus: int = 100,
|
| 140 |
+
context_budget: str = "+100",
|
| 141 |
+
token_budget_ratio: float = 1.4,
|
| 142 |
+
condition_in_question: str = "none",
|
| 143 |
+
reorder_context: str = "original",
|
| 144 |
+
dynamic_context_compression_ratio: float = 0.0,
|
| 145 |
+
condition_compare: bool = False,
|
| 146 |
+
add_instruction: bool = False,
|
| 147 |
+
rank_method: str = "longllmlingua",
|
| 148 |
+
concate_question: bool = True,
|
| 149 |
+
):
|
| 150 |
+
if isinstance(context, str):
|
| 151 |
+
context = [context]
|
| 152 |
+
assert not (
|
| 153 |
+
rank_method == "longllmlingua" and not question
|
| 154 |
+
), "In the LongLLMLingua, it is necessary to set a question."
|
| 155 |
+
if condition_compare and "_condition" not in condition_in_question:
|
| 156 |
+
condition_in_question += "_condition"
|
| 157 |
+
if rank_method == "longllmlingua":
|
| 158 |
+
if condition_in_question == "none":
|
| 159 |
+
condition_in_question = "after"
|
| 160 |
+
elif rank_method == "llmlingua":
|
| 161 |
+
condition_in_question = (
|
| 162 |
+
"none"
|
| 163 |
+
if "_condition" not in condition_in_question
|
| 164 |
+
else "none_condition"
|
| 165 |
+
)
|
| 166 |
+
origin_tokens = len(
|
| 167 |
+
encoding.encode("\n\n".join([instruction] + context + [question]).strip())
|
| 168 |
+
)
|
| 169 |
+
context_tokens_length = [self.get_token_length(c) for c in context]
|
| 170 |
+
instruction_tokens_length, question_tokens_length = self.get_token_length(
|
| 171 |
+
instruction
|
| 172 |
+
), self.get_token_length(question)
|
| 173 |
+
if target_token == -1:
|
| 174 |
+
target_token = (
|
| 175 |
+
(
|
| 176 |
+
instruction_tokens_length
|
| 177 |
+
+ question_tokens_length
|
| 178 |
+
+ sum(context_tokens_length)
|
| 179 |
+
)
|
| 180 |
+
* (1 - ratio)
|
| 181 |
+
- instruction_tokens_length
|
| 182 |
+
- (question_tokens_length if concate_question else 0)
|
| 183 |
+
)
|
| 184 |
+
condition_flag = "_condition" in condition_in_question
|
| 185 |
+
condition_in_question = condition_in_question.replace("_condition", "")
|
| 186 |
+
|
| 187 |
+
if len(context) > 1 and use_context_level_filter:
|
| 188 |
+
context, dynamic_ratio = self.control_context_budget(
|
| 189 |
+
context,
|
| 190 |
+
context_tokens_length,
|
| 191 |
+
target_token,
|
| 192 |
+
force_context_ids,
|
| 193 |
+
force_context_number,
|
| 194 |
+
question,
|
| 195 |
+
condition_in_question,
|
| 196 |
+
reorder_context=reorder_context,
|
| 197 |
+
dynamic_context_compression_ratio=dynamic_context_compression_ratio,
|
| 198 |
+
rank_method=rank_method,
|
| 199 |
+
context_budget=context_budget,
|
| 200 |
+
)
|
| 201 |
+
else:
|
| 202 |
+
dynamic_ratio = [0.0] * len(context)
|
| 203 |
+
|
| 204 |
+
if use_sentence_level_filter:
|
| 205 |
+
context = self.control_sentence_budget(
|
| 206 |
+
context,
|
| 207 |
+
target_token,
|
| 208 |
+
keep_first_sentence=keep_first_sentence,
|
| 209 |
+
keep_last_sentence=keep_last_sentence,
|
| 210 |
+
keep_sentence_number=keep_sentence_number,
|
| 211 |
+
high_priority_bonus=high_priority_bonus,
|
| 212 |
+
token_budget_ratio=token_budget_ratio,
|
| 213 |
+
question=question,
|
| 214 |
+
condition_in_question=condition_in_question,
|
| 215 |
+
rank_method=rank_method,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
if condition_flag:
|
| 219 |
+
if add_instruction:
|
| 220 |
+
context = [question + "\n\n" + instruction] + context
|
| 221 |
+
start = self.get_token_length(question + "\n\n" + instruction) + 2
|
| 222 |
+
else:
|
| 223 |
+
context = [question] + context
|
| 224 |
+
start = self.get_token_length(question) + 2
|
| 225 |
+
else:
|
| 226 |
+
start = 0
|
| 227 |
+
|
| 228 |
+
if use_token_level_filter:
|
| 229 |
+
context = self.iterative_compress_prompt(
|
| 230 |
+
context,
|
| 231 |
+
target_token,
|
| 232 |
+
iterative_size=iterative_size,
|
| 233 |
+
keep_split=keep_split,
|
| 234 |
+
start=start,
|
| 235 |
+
dynamic_ratio=dynamic_ratio,
|
| 236 |
+
condition_compare=condition_compare,
|
| 237 |
+
)
|
| 238 |
+
compressed_prompt = (
|
| 239 |
+
self.tokenizer.batch_decode(context[0])[0]
|
| 240 |
+
.replace("<s> ", "")
|
| 241 |
+
.replace("<s>", "")
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
compressed_prompt = "\n\n".join(context)
|
| 245 |
+
|
| 246 |
+
if instruction:
|
| 247 |
+
compressed_prompt = instruction + "\n\n" + compressed_prompt
|
| 248 |
+
if question and concate_question:
|
| 249 |
+
compressed_prompt = compressed_prompt + "\n\n" + question
|
| 250 |
+
|
| 251 |
+
compressed_tokens = len(encoding.encode(compressed_prompt))
|
| 252 |
+
saving = (origin_tokens - compressed_tokens) * 0.06 / 1000
|
| 253 |
+
return {
|
| 254 |
+
"compressed_prompt": compressed_prompt,
|
| 255 |
+
"origin_tokens": origin_tokens,
|
| 256 |
+
"compressed_tokens": compressed_tokens,
|
| 257 |
+
# "ratio": f"{origin_tokens/compressed_tokens:.1f}x",
|
| 258 |
+
"ratio": compressed_tokens / origin_tokens,
|
| 259 |
+
# "saving": f", Saving ${saving:.1f} in GPT-4.",
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
def get_token_length(self, text: str, add_special_tokens: bool = True):
|
| 263 |
+
return len(
|
| 264 |
+
self.tokenizer(text, add_special_tokens=add_special_tokens).input_ids
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def get_condition_ppl(
|
| 268 |
+
self,
|
| 269 |
+
text: str,
|
| 270 |
+
question: str,
|
| 271 |
+
condition_in_question: str = "none",
|
| 272 |
+
granularity: str = "sentence",
|
| 273 |
+
):
|
| 274 |
+
if condition_in_question == "none":
|
| 275 |
+
return self.get_ppl(text, granularity=granularity)
|
| 276 |
+
elif condition_in_question == "before":
|
| 277 |
+
return self.get_ppl(
|
| 278 |
+
question + text,
|
| 279 |
+
granularity=granularity,
|
| 280 |
+
condition_mode="after",
|
| 281 |
+
condition_pos_id=self.get_token_length(question) - 1,
|
| 282 |
+
)
|
| 283 |
+
elif condition_in_question == "after":
|
| 284 |
+
return self.get_ppl(
|
| 285 |
+
text + question,
|
| 286 |
+
granularity=granularity,
|
| 287 |
+
condition_mode="after",
|
| 288 |
+
condition_pos_id=self.get_token_length(text) - 1,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
def get_dynamic_compression_ratio(
|
| 292 |
+
self,
|
| 293 |
+
context: list,
|
| 294 |
+
target_token: float,
|
| 295 |
+
iterative_size: int,
|
| 296 |
+
dynamic_ratio: list,
|
| 297 |
+
start: int,
|
| 298 |
+
):
|
| 299 |
+
def get_ratio(base: float, delta: float):
|
| 300 |
+
return max(min(1, base + delta), 0)
|
| 301 |
+
|
| 302 |
+
context_length = [self.get_token_length(ii, False) + 2 for ii in context]
|
| 303 |
+
if start:
|
| 304 |
+
context_length = context_length[1:]
|
| 305 |
+
tau = target_token / (sum(context_length) + 1)
|
| 306 |
+
res, idx, last, last_target = [], 0, 1, []
|
| 307 |
+
while idx < len(context_length):
|
| 308 |
+
if last + context_length[idx] >= iterative_size:
|
| 309 |
+
last_target.append(
|
| 310 |
+
(iterative_size - last, get_ratio(tau, dynamic_ratio[idx]))
|
| 311 |
+
)
|
| 312 |
+
res.append(last_target)
|
| 313 |
+
last = last + context_length[idx] - iterative_size
|
| 314 |
+
if last > iterative_size:
|
| 315 |
+
k = last // iterative_size
|
| 316 |
+
res.extend(
|
| 317 |
+
[[(iterative_size, get_ratio(tau, dynamic_ratio[idx]))]] * k
|
| 318 |
+
)
|
| 319 |
+
last -= k * iterative_size
|
| 320 |
+
|
| 321 |
+
last_target = (
|
| 322 |
+
[(last, get_ratio(tau, dynamic_ratio[idx]))] if last else []
|
| 323 |
+
)
|
| 324 |
+
else:
|
| 325 |
+
last += context_length[idx]
|
| 326 |
+
last_target.append(
|
| 327 |
+
(context_length[idx], get_ratio(tau, dynamic_ratio[idx]))
|
| 328 |
+
)
|
| 329 |
+
idx += 1
|
| 330 |
+
if last_target:
|
| 331 |
+
res.append(last_target)
|
| 332 |
+
return res
|
| 333 |
+
|
| 334 |
+
def control_context_budget(
|
| 335 |
+
self,
|
| 336 |
+
context: List[str],
|
| 337 |
+
context_tokens_length: List[int],
|
| 338 |
+
target_token: float,
|
| 339 |
+
force_context_ids: List[int] = None,
|
| 340 |
+
force_context_number: int = None,
|
| 341 |
+
question: str = "",
|
| 342 |
+
condition_in_question: str = "none",
|
| 343 |
+
reorder_context: str = "original",
|
| 344 |
+
dynamic_context_compression_ratio: float = 0.0,
|
| 345 |
+
rank_method: str = "longllmlingua",
|
| 346 |
+
context_budget: str = "+100",
|
| 347 |
+
):
|
| 348 |
+
if force_context_ids is not None:
|
| 349 |
+
return [context[ii] for ii in force_context_ids]
|
| 350 |
+
demostrations_sort = self.get_rank_results(
|
| 351 |
+
context,
|
| 352 |
+
question,
|
| 353 |
+
rank_method,
|
| 354 |
+
condition_in_question,
|
| 355 |
+
context_tokens_length,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
if target_token < 0:
|
| 359 |
+
target_token = 100
|
| 360 |
+
target_token = eval("target_token" + context_budget)
|
| 361 |
+
res = []
|
| 362 |
+
used = force_context_ids if force_context_ids is not None else []
|
| 363 |
+
|
| 364 |
+
self.context_idxs.append([x for idx, (x, _) in enumerate(demostrations_sort)])
|
| 365 |
+
for idx, _ in demostrations_sort:
|
| 366 |
+
if idx >= len(context_tokens_length):
|
| 367 |
+
continue
|
| 368 |
+
target_token -= context_tokens_length[idx]
|
| 369 |
+
if idx not in used:
|
| 370 |
+
used.append(idx)
|
| 371 |
+
if target_token < 0 or (
|
| 372 |
+
force_context_number is not None and len(res) >= force_context_number
|
| 373 |
+
):
|
| 374 |
+
break
|
| 375 |
+
original_used = used
|
| 376 |
+
if reorder_context == "original":
|
| 377 |
+
used = sorted(used)
|
| 378 |
+
elif reorder_context == "two_stage":
|
| 379 |
+
l, r = [_ for idx, _ in enumerate(used) if idx % 2 == 0], [
|
| 380 |
+
_ for idx, _ in enumerate(used) if idx % 2 == 1
|
| 381 |
+
]
|
| 382 |
+
used = l + r[::-1]
|
| 383 |
+
|
| 384 |
+
if dynamic_context_compression_ratio > 0:
|
| 385 |
+
N = len(used)
|
| 386 |
+
if condition_in_question:
|
| 387 |
+
rank = [
|
| 388 |
+
i
|
| 389 |
+
for i, _ in self.get_rank_results(
|
| 390 |
+
context,
|
| 391 |
+
question,
|
| 392 |
+
"longllmlingua",
|
| 393 |
+
"after",
|
| 394 |
+
context_tokens_length,
|
| 395 |
+
)
|
| 396 |
+
]
|
| 397 |
+
used = sorted(used, key=lambda x: rank.index(x))
|
| 398 |
+
dynamic_ratio = [
|
| 399 |
+
i * (abs(dynamic_context_compression_ratio) / (N - 1)) if N > 1 else 0
|
| 400 |
+
for i in range(-(N - 1), N, 2)
|
| 401 |
+
][::-1]
|
| 402 |
+
dynamic_ratio_map = {i: j for i, j in zip(original_used, dynamic_ratio)}
|
| 403 |
+
dynamic_ratio = [dynamic_ratio_map[i] for i in used]
|
| 404 |
+
else:
|
| 405 |
+
dynamic_ratio = [0.0] * len(used)
|
| 406 |
+
|
| 407 |
+
res = [context[idx] for idx in used if idx < len(context)]
|
| 408 |
+
return res, dynamic_ratio
|
| 409 |
+
|
| 410 |
+
def control_sentence_budget(
|
| 411 |
+
self,
|
| 412 |
+
context: List[str],
|
| 413 |
+
target_token: float,
|
| 414 |
+
keep_first_sentence: int = 0,
|
| 415 |
+
keep_last_sentence: int = 0,
|
| 416 |
+
keep_sentence_number: int = 0,
|
| 417 |
+
high_priority_bonus: int = 100,
|
| 418 |
+
token_budget_ratio: float = 1.4,
|
| 419 |
+
question: str = "",
|
| 420 |
+
condition_in_question: str = "none",
|
| 421 |
+
rank_method: str = "longllmlingua",
|
| 422 |
+
):
|
| 423 |
+
def keep_sentence(dem_idx: int, sent_keep: int):
|
| 424 |
+
idxs = sorted(dem_g[dem_idx], key=lambda x: sentence_ppl[x])[:sent_keep]
|
| 425 |
+
for idx in idxs:
|
| 426 |
+
sentence_ppl[idx] += high_priority_bonus
|
| 427 |
+
|
| 428 |
+
sentences = [nltk.sent_tokenize(c) for c in context]
|
| 429 |
+
dem_g, s2de, idx = defaultdict(set), defaultdict(int), 0
|
| 430 |
+
for idx_d, s in enumerate(sentences):
|
| 431 |
+
for _ in s:
|
| 432 |
+
dem_g[idx_d].add(idx)
|
| 433 |
+
s2de[idx] = idx_d
|
| 434 |
+
idx += 1
|
| 435 |
+
|
| 436 |
+
context_sentences = [s for ii in sentences for s in ii]
|
| 437 |
+
sentence_tokens_length = [
|
| 438 |
+
self.get_token_length(sentence) for sentence in context_sentences
|
| 439 |
+
]
|
| 440 |
+
N = len(context_sentences)
|
| 441 |
+
flags = list(range(len(context_sentences)))
|
| 442 |
+
if len(sentence_tokens_length) == 1:
|
| 443 |
+
return context
|
| 444 |
+
if rank_method == "longllmlingua":
|
| 445 |
+
sentence_ppl = [
|
| 446 |
+
self.get_condition_ppl(sentence, question, condition_in_question)
|
| 447 |
+
.cpu()
|
| 448 |
+
.numpy()
|
| 449 |
+
.item()
|
| 450 |
+
for sentence in context_sentences
|
| 451 |
+
]
|
| 452 |
+
if keep_first_sentence:
|
| 453 |
+
sentence_ppl[:keep_first_sentence] = [
|
| 454 |
+
ii + high_priority_bonus
|
| 455 |
+
for ii in sentence_ppl[:keep_first_sentence]
|
| 456 |
+
]
|
| 457 |
+
if keep_last_sentence:
|
| 458 |
+
sentence_ppl[-keep_last_sentence:] = [
|
| 459 |
+
ii + high_priority_bonus
|
| 460 |
+
for ii in sentence_ppl[-keep_last_sentence:]
|
| 461 |
+
]
|
| 462 |
+
if keep_sentence_number:
|
| 463 |
+
for dem_idx in range(len(sentences)):
|
| 464 |
+
keep_sentence(dem_idx, keep_sentence_number)
|
| 465 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
| 466 |
+
sent_sort = sorted(
|
| 467 |
+
enumerate(sentence_ppl), key=lambda x: sort_direct * x[1]
|
| 468 |
+
)
|
| 469 |
+
else:
|
| 470 |
+
sent_sort = self.get_rank_results(
|
| 471 |
+
context_sentences,
|
| 472 |
+
question,
|
| 473 |
+
rank_method,
|
| 474 |
+
condition_in_question,
|
| 475 |
+
[0] * len(context_sentences),
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
sentence_flags = [False] * N
|
| 479 |
+
if target_token < 0:
|
| 480 |
+
target_token = 100
|
| 481 |
+
target_token *= token_budget_ratio
|
| 482 |
+
res = []
|
| 483 |
+
for idx, _ in sent_sort:
|
| 484 |
+
idx = flags[idx]
|
| 485 |
+
target_token -= sentence_tokens_length[idx]
|
| 486 |
+
sentence_flags[idx] = True
|
| 487 |
+
if target_token < 0:
|
| 488 |
+
break
|
| 489 |
+
idx = 0
|
| 490 |
+
res = []
|
| 491 |
+
for s in sentences:
|
| 492 |
+
tmp = [jj for ii, jj in enumerate(s) if sentence_flags[idx + ii]]
|
| 493 |
+
res.append("\n".join(tmp))
|
| 494 |
+
idx += len(s)
|
| 495 |
+
return res
|
| 496 |
+
|
| 497 |
+
def get_compressed_input(
|
| 498 |
+
self,
|
| 499 |
+
loss,
|
| 500 |
+
input_ids,
|
| 501 |
+
attention_mask,
|
| 502 |
+
end=200,
|
| 503 |
+
iterative_size=200,
|
| 504 |
+
threshold=0.5,
|
| 505 |
+
keep_flag=None,
|
| 506 |
+
split_token_id: int = 13,
|
| 507 |
+
start: int = 0,
|
| 508 |
+
self_loss=None,
|
| 509 |
+
self_input_ids=None,
|
| 510 |
+
self_attention_mask=None,
|
| 511 |
+
):
|
| 512 |
+
if self_loss is not None:
|
| 513 |
+
need_idx = torch.concat(
|
| 514 |
+
[
|
| 515 |
+
loss[:start] > 0,
|
| 516 |
+
self_loss[: loss[start:].shape[0]] - loss[start:] > threshold,
|
| 517 |
+
loss[:1] > 0,
|
| 518 |
+
]
|
| 519 |
+
)
|
| 520 |
+
else:
|
| 521 |
+
need_idx = torch.concat([loss > threshold, loss[:1] > 0])
|
| 522 |
+
need_idx[end:] = 1
|
| 523 |
+
need_idx[: end - iterative_size] = 1
|
| 524 |
+
loss = loss[need_idx[:-1]]
|
| 525 |
+
if self_loss is not None:
|
| 526 |
+
if need_idx.shape[0] < self_loss.shape[0] + start + 1:
|
| 527 |
+
need_idx = torch.cat(
|
| 528 |
+
[
|
| 529 |
+
need_idx,
|
| 530 |
+
torch.ones(
|
| 531 |
+
self_loss.shape[0] - need_idx.shape[0] + start + 1,
|
| 532 |
+
dtype=torch.bool,
|
| 533 |
+
).to(need_idx.device),
|
| 534 |
+
]
|
| 535 |
+
)
|
| 536 |
+
self_loss = self_loss[need_idx[start:-1]]
|
| 537 |
+
|
| 538 |
+
if need_idx.shape[0] < input_ids.shape[1]:
|
| 539 |
+
need_idx = torch.cat(
|
| 540 |
+
[
|
| 541 |
+
need_idx,
|
| 542 |
+
torch.ones(
|
| 543 |
+
input_ids.shape[1] - need_idx.shape[0], dtype=torch.bool
|
| 544 |
+
).to(need_idx.device),
|
| 545 |
+
]
|
| 546 |
+
)
|
| 547 |
+
elif need_idx.shape[0] > input_ids.shape[1]:
|
| 548 |
+
need_idx = need_idx[: input_ids.shape[1]]
|
| 549 |
+
|
| 550 |
+
if keep_flag is not None:
|
| 551 |
+
need_idx[keep_flag == 1] = 1
|
| 552 |
+
last = -1
|
| 553 |
+
if keep_flag is not None:
|
| 554 |
+
for ii in range(end - iterative_size, end):
|
| 555 |
+
if need_idx[ii] != 1:
|
| 556 |
+
continue
|
| 557 |
+
now = input_ids[0][ii].detach().cpu().item()
|
| 558 |
+
if (
|
| 559 |
+
now == split_token_id
|
| 560 |
+
and last == split_token_id
|
| 561 |
+
and keep_flag[ii].detach().cpu().item() == 0
|
| 562 |
+
):
|
| 563 |
+
need_idx[ii] = 0
|
| 564 |
+
else:
|
| 565 |
+
last = now
|
| 566 |
+
compressed_input_ids = input_ids[attention_mask == 1][need_idx].unsqueeze(0)
|
| 567 |
+
compressed_attention_mask = attention_mask[attention_mask == 1][
|
| 568 |
+
need_idx
|
| 569 |
+
].unsqueeze(0)
|
| 570 |
+
|
| 571 |
+
if self_loss is not None:
|
| 572 |
+
self_compressed_input_ids = self_input_ids[self_attention_mask == 1][
|
| 573 |
+
need_idx[start:]
|
| 574 |
+
].unsqueeze(0)
|
| 575 |
+
self_compressed_attention_mask = self_attention_mask[
|
| 576 |
+
self_attention_mask == 1
|
| 577 |
+
][need_idx[start:]].unsqueeze(0)
|
| 578 |
+
else:
|
| 579 |
+
self_compressed_input_ids, self_compressed_attention_mask = None, None
|
| 580 |
+
if keep_flag is not None:
|
| 581 |
+
if len(keep_flag) > len(need_idx):
|
| 582 |
+
keep_flag = torch.cat(
|
| 583 |
+
[
|
| 584 |
+
keep_flag[:start],
|
| 585 |
+
keep_flag[start : len(need_idx) + start][need_idx],
|
| 586 |
+
keep_flag[start + len(need_idx) :],
|
| 587 |
+
]
|
| 588 |
+
)
|
| 589 |
+
else:
|
| 590 |
+
keep_flag = keep_flag[need_idx]
|
| 591 |
+
end -= (need_idx[:end] == 0).sum()
|
| 592 |
+
return (
|
| 593 |
+
compressed_input_ids,
|
| 594 |
+
compressed_attention_mask,
|
| 595 |
+
keep_flag,
|
| 596 |
+
end,
|
| 597 |
+
loss,
|
| 598 |
+
self_loss,
|
| 599 |
+
self_compressed_input_ids,
|
| 600 |
+
self_compressed_attention_mask,
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
def get_estimate_threshold_base_distribution(
|
| 604 |
+
self, ppl, ratio: float, condition_flag: bool = False
|
| 605 |
+
):
|
| 606 |
+
ppl = ppl[ppl != 10000]
|
| 607 |
+
target_token = max(0, min(len(ppl) - 1, int(len(ppl) * ratio) - 1))
|
| 608 |
+
return (
|
| 609 |
+
ppl.sort(descending=not condition_flag)
|
| 610 |
+
.values[target_token]
|
| 611 |
+
.detach()
|
| 612 |
+
.cpu()
|
| 613 |
+
.item()
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
def iterative_compress_prompt(
|
| 617 |
+
self,
|
| 618 |
+
context: List[str],
|
| 619 |
+
target_token: float,
|
| 620 |
+
iterative_size: int = 200,
|
| 621 |
+
keep_split: bool = False,
|
| 622 |
+
split_token_id: int = 13,
|
| 623 |
+
start: int = 0,
|
| 624 |
+
dynamic_ratio: list = None,
|
| 625 |
+
condition_compare: bool = False,
|
| 626 |
+
):
|
| 627 |
+
iterative_ratios = self.get_dynamic_compression_ratio(
|
| 628 |
+
context, target_token, iterative_size, dynamic_ratio, start
|
| 629 |
+
)
|
| 630 |
+
context = "\n\n".join(context)
|
| 631 |
+
tokenized_text = self.tokenizer(context, return_tensors="pt")
|
| 632 |
+
input_ids = tokenized_text["input_ids"].to(self.device)
|
| 633 |
+
attention_mask = tokenized_text["attention_mask"].to(self.device)
|
| 634 |
+
|
| 635 |
+
N = (attention_mask == 1).sum()
|
| 636 |
+
compressed_input_ids, compressed_attention_mask = input_ids, attention_mask
|
| 637 |
+
if condition_compare:
|
| 638 |
+
self_input_ids, self_attention_mask = (
|
| 639 |
+
input_ids[:, start:],
|
| 640 |
+
attention_mask[:, start:],
|
| 641 |
+
)
|
| 642 |
+
self_compressed_input_ids, self_compressed_attention_mask = (
|
| 643 |
+
self_input_ids,
|
| 644 |
+
self_attention_mask,
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
end = min(iterative_size + start, compressed_input_ids.shape[1])
|
| 648 |
+
threshold, keep_flag = None, None
|
| 649 |
+
if keep_split:
|
| 650 |
+
input_ids_numpy = input_ids.cpu().detach().numpy()[0]
|
| 651 |
+
N = len(input_ids_numpy)
|
| 652 |
+
keep_flag = [
|
| 653 |
+
int(
|
| 654 |
+
(
|
| 655 |
+
ii > 0
|
| 656 |
+
and input_ids_numpy[ii] == split_token_id
|
| 657 |
+
and input_ids_numpy[ii - 1] == split_token_id
|
| 658 |
+
)
|
| 659 |
+
or (
|
| 660 |
+
ii < N - 1
|
| 661 |
+
and input_ids_numpy[ii] == split_token_id
|
| 662 |
+
and input_ids_numpy[ii + 1] == split_token_id
|
| 663 |
+
)
|
| 664 |
+
)
|
| 665 |
+
for ii in range(N)
|
| 666 |
+
]
|
| 667 |
+
keep_flag = torch.tensor(keep_flag).to(self.device)
|
| 668 |
+
past_key_values, past_loss, ready_end = None, None, 0
|
| 669 |
+
self_past_key_values, self_past_loss, self_ready_end = None, None, 0
|
| 670 |
+
pop_compressed_input_ids, pop_self_compressed_input_ids = None, None
|
| 671 |
+
idx = 0
|
| 672 |
+
while end <= compressed_input_ids.shape[1]:
|
| 673 |
+
if end > self.max_position_embeddings and past_key_values is not None:
|
| 674 |
+
# KV-Cache Compression
|
| 675 |
+
e, s = end - self.max_position_embeddings, self.cache_bos_num
|
| 676 |
+
if pop_compressed_input_ids is None:
|
| 677 |
+
pop_compressed_input_ids = compressed_input_ids[:, :e]
|
| 678 |
+
else:
|
| 679 |
+
pop_compressed_input_ids = torch.cat(
|
| 680 |
+
[pop_compressed_input_ids, compressed_input_ids[:, :e]], dim=-1
|
| 681 |
+
)
|
| 682 |
+
compressed_input_ids = compressed_input_ids[:, e:]
|
| 683 |
+
compressed_attention_mask = compressed_attention_mask[:, e:]
|
| 684 |
+
past_key_values = [
|
| 685 |
+
[
|
| 686 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
| 687 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
| 688 |
+
]
|
| 689 |
+
for k, v in past_key_values
|
| 690 |
+
]
|
| 691 |
+
end, ready_end = end - e, ready_end - e
|
| 692 |
+
if condition_compare:
|
| 693 |
+
self_ready_end -= e
|
| 694 |
+
if pop_self_compressed_input_ids is None:
|
| 695 |
+
pop_self_compressed_input_ids = self_compressed_input_ids[:, :e]
|
| 696 |
+
else:
|
| 697 |
+
pop_self_compressed_input_ids = torch.cat(
|
| 698 |
+
[
|
| 699 |
+
pop_self_compressed_input_ids,
|
| 700 |
+
self_compressed_input_ids[:, :e],
|
| 701 |
+
],
|
| 702 |
+
dim=-1,
|
| 703 |
+
)
|
| 704 |
+
self_compressed_input_ids = self_compressed_input_ids[:, e:]
|
| 705 |
+
self_compressed_attention_mask = self_compressed_attention_mask[
|
| 706 |
+
:, e:
|
| 707 |
+
]
|
| 708 |
+
self_past_key_values = [
|
| 709 |
+
[
|
| 710 |
+
torch.cat([k[..., :s, :], k[..., s + e :, :]], dim=-2),
|
| 711 |
+
torch.cat([v[..., :s, :], v[..., s + e :, :]], dim=-2),
|
| 712 |
+
]
|
| 713 |
+
for k, v in self_past_key_values
|
| 714 |
+
]
|
| 715 |
+
|
| 716 |
+
loss, past_key_values = self.get_ppl(
|
| 717 |
+
"",
|
| 718 |
+
"token",
|
| 719 |
+
compressed_input_ids,
|
| 720 |
+
compressed_attention_mask,
|
| 721 |
+
past_key_values=past_key_values,
|
| 722 |
+
return_kv=True,
|
| 723 |
+
end=end if idx else None,
|
| 724 |
+
)
|
| 725 |
+
if past_loss is not None:
|
| 726 |
+
if end - 1 > len(past_loss):
|
| 727 |
+
past_loss = torch.cat(
|
| 728 |
+
[past_loss, torch.zeros_like(loss)[: end - 1 - len(past_loss)]]
|
| 729 |
+
)
|
| 730 |
+
past_loss[ready_end : end - 1] = loss
|
| 731 |
+
loss = past_loss
|
| 732 |
+
else:
|
| 733 |
+
past_loss = loss
|
| 734 |
+
if idx:
|
| 735 |
+
past_key_values = [
|
| 736 |
+
[k[:, :, : end - iterative_size], v[:, :, : end - iterative_size]]
|
| 737 |
+
for k, v in past_key_values
|
| 738 |
+
]
|
| 739 |
+
else:
|
| 740 |
+
past_key_values = None
|
| 741 |
+
|
| 742 |
+
if condition_compare:
|
| 743 |
+
self_loss, self_past_key_values = self.get_ppl(
|
| 744 |
+
"",
|
| 745 |
+
"token",
|
| 746 |
+
self_compressed_input_ids,
|
| 747 |
+
self_compressed_attention_mask,
|
| 748 |
+
past_key_values=self_past_key_values,
|
| 749 |
+
return_kv=True,
|
| 750 |
+
end=end - start if idx else None,
|
| 751 |
+
)
|
| 752 |
+
if self_past_loss is not None:
|
| 753 |
+
if end - start - 1 > len(self_past_loss):
|
| 754 |
+
self_past_loss = torch.cat(
|
| 755 |
+
[
|
| 756 |
+
self_past_loss,
|
| 757 |
+
torch.zeros_like(self_loss)[
|
| 758 |
+
: end - 1 - start - len(self_past_loss)
|
| 759 |
+
],
|
| 760 |
+
]
|
| 761 |
+
)
|
| 762 |
+
self_past_loss[self_ready_end : end - start - 1] = self_loss
|
| 763 |
+
self_loss = self_past_loss
|
| 764 |
+
else:
|
| 765 |
+
self_past_loss = self_loss
|
| 766 |
+
if idx:
|
| 767 |
+
self_past_key_values = [
|
| 768 |
+
[
|
| 769 |
+
k[:, :, : end - iterative_size - start],
|
| 770 |
+
v[:, :, : end - iterative_size - start],
|
| 771 |
+
]
|
| 772 |
+
for k, v in self_past_key_values
|
| 773 |
+
]
|
| 774 |
+
else:
|
| 775 |
+
self_past_key_values = None
|
| 776 |
+
|
| 777 |
+
self_ready_end = (
|
| 778 |
+
end - start - iterative_size if not (start and idx == 0) else 0
|
| 779 |
+
)
|
| 780 |
+
ready_end = end - iterative_size if not (start and idx == 0) else 0
|
| 781 |
+
|
| 782 |
+
for delta_end, ratio in iterative_ratios[idx]:
|
| 783 |
+
loss = past_loss
|
| 784 |
+
if condition_compare:
|
| 785 |
+
self_loss = self_past_loss
|
| 786 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
| 787 |
+
self_loss[: loss[start:].shape[0]] - loss[start:], ratio, False
|
| 788 |
+
)
|
| 789 |
+
else:
|
| 790 |
+
threshold = self.get_estimate_threshold_base_distribution(
|
| 791 |
+
loss, ratio, False
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
(
|
| 795 |
+
compressed_input_ids,
|
| 796 |
+
compressed_attention_mask,
|
| 797 |
+
keep_flag,
|
| 798 |
+
end,
|
| 799 |
+
past_loss,
|
| 800 |
+
self_past_loss,
|
| 801 |
+
self_compressed_input_ids,
|
| 802 |
+
self_compressed_attention_mask,
|
| 803 |
+
) = self.get_compressed_input(
|
| 804 |
+
loss,
|
| 805 |
+
compressed_input_ids,
|
| 806 |
+
compressed_attention_mask,
|
| 807 |
+
end - iterative_size + delta_end,
|
| 808 |
+
iterative_size=delta_end,
|
| 809 |
+
threshold=threshold,
|
| 810 |
+
keep_flag=keep_flag,
|
| 811 |
+
split_token_id=split_token_id,
|
| 812 |
+
start=start,
|
| 813 |
+
self_loss=self_loss if condition_compare else None,
|
| 814 |
+
self_input_ids=self_compressed_input_ids
|
| 815 |
+
if condition_compare
|
| 816 |
+
else None,
|
| 817 |
+
self_attention_mask=self_compressed_attention_mask
|
| 818 |
+
if condition_compare
|
| 819 |
+
else None,
|
| 820 |
+
)
|
| 821 |
+
end += iterative_size
|
| 822 |
+
idx += 1
|
| 823 |
+
if pop_compressed_input_ids is not None:
|
| 824 |
+
compressed_input_ids = torch.cat(
|
| 825 |
+
[pop_compressed_input_ids, compressed_input_ids], dim=-1
|
| 826 |
+
)
|
| 827 |
+
return compressed_input_ids[:, start:], compressed_attention_mask[:, start:]
|
| 828 |
+
|
| 829 |
+
def recover(
|
| 830 |
+
self,
|
| 831 |
+
original_prompt: str,
|
| 832 |
+
compressed_prompt: str,
|
| 833 |
+
response: str,
|
| 834 |
+
):
|
| 835 |
+
def match_from_compressed(response_word):
|
| 836 |
+
response_input_ids = self.tokenizer(
|
| 837 |
+
response_word, add_special_tokens=False
|
| 838 |
+
)["input_ids"]
|
| 839 |
+
response_set, response_c = set(response_input_ids), defaultdict(list)
|
| 840 |
+
for idx in range(M):
|
| 841 |
+
if original_input_ids[idx] in response_set:
|
| 842 |
+
response_c[original_input_ids[idx]].append(idx)
|
| 843 |
+
res, res_min, res_c = None, float("inf"), 1
|
| 844 |
+
n = len(response_input_ids)
|
| 845 |
+
for l in response_c[response_input_ids[0]]:
|
| 846 |
+
x, y, c = 0, l, 1
|
| 847 |
+
for x in range(1, n):
|
| 848 |
+
idx = bisect.bisect_right(response_c[response_input_ids[x]], y)
|
| 849 |
+
if (
|
| 850 |
+
idx >= len(response_c[response_input_ids[x]])
|
| 851 |
+
or response_c[response_input_ids[x]][idx] - y > 10
|
| 852 |
+
):
|
| 853 |
+
continue
|
| 854 |
+
c += 1
|
| 855 |
+
y = response_c[response_input_ids[x]][idx]
|
| 856 |
+
if c > res_c:
|
| 857 |
+
res_c = c
|
| 858 |
+
res_min = y - l + 1
|
| 859 |
+
res = (l, y + 1)
|
| 860 |
+
elif c == res_c and y - l + 1 < res_min:
|
| 861 |
+
res_min = y - l + 1
|
| 862 |
+
res = (l, y + 1)
|
| 863 |
+
|
| 864 |
+
if res is None:
|
| 865 |
+
return response_word
|
| 866 |
+
# while l > 0 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
| 867 |
+
# l -= 1
|
| 868 |
+
# while r < M - 1 and not self.tokenizer.convert_ids_to_tokens(original_input_ids[l]).startswith("_"):
|
| 869 |
+
# l -= 1
|
| 870 |
+
return self.tokenizer.decode(original_input_ids[res[0] : res[1]])
|
| 871 |
+
|
| 872 |
+
response_words = response.split(" ")
|
| 873 |
+
|
| 874 |
+
original_input_ids = self.tokenizer(original_prompt, add_special_tokens=False)[
|
| 875 |
+
"input_ids"
|
| 876 |
+
]
|
| 877 |
+
N, M = len(response_words), len(original_input_ids)
|
| 878 |
+
recovered_response_words = []
|
| 879 |
+
l = 0
|
| 880 |
+
while l < N:
|
| 881 |
+
if response_words[l] not in compressed_prompt:
|
| 882 |
+
recovered_response_words.append(response_words[l])
|
| 883 |
+
l += 1
|
| 884 |
+
continue
|
| 885 |
+
r = l
|
| 886 |
+
while (
|
| 887 |
+
r + 1 < N and " ".join(response_words[l : r + 2]) in compressed_prompt
|
| 888 |
+
):
|
| 889 |
+
r += 1
|
| 890 |
+
|
| 891 |
+
match_words = match_from_compressed(" ".join(response_words[l : r + 1]))
|
| 892 |
+
recovered_response_words.append(match_words)
|
| 893 |
+
l = r + 1
|
| 894 |
+
return " ".join(recovered_response_words)
|
| 895 |
+
|
| 896 |
+
def get_rank_results(
|
| 897 |
+
self,
|
| 898 |
+
context: list,
|
| 899 |
+
question: str,
|
| 900 |
+
rank_method: str,
|
| 901 |
+
condition_in_question: str,
|
| 902 |
+
context_tokens_length: list,
|
| 903 |
+
):
|
| 904 |
+
def get_distance_bm25(corpus, query):
|
| 905 |
+
from rank_bm25 import BM25Okapi
|
| 906 |
+
|
| 907 |
+
tokenized_corpus = [doc.split(" ") for doc in corpus]
|
| 908 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
| 909 |
+
tokenized_query = query.split(" ")
|
| 910 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
| 911 |
+
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
|
| 912 |
+
return idx
|
| 913 |
+
|
| 914 |
+
def get_distance_gzip(corpus, query):
|
| 915 |
+
def get_score(x, y):
|
| 916 |
+
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
|
| 917 |
+
cxy = len(gzip.compress(f"{x} {y}".encode()))
|
| 918 |
+
return (cxy - min(cx, cy)) / max(cx, cy)
|
| 919 |
+
|
| 920 |
+
import gzip
|
| 921 |
+
|
| 922 |
+
doc_scores = [get_score(doc, query) for doc in corpus]
|
| 923 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 924 |
+
return idx
|
| 925 |
+
|
| 926 |
+
def get_distance_sentbert(corpus, query):
|
| 927 |
+
from sentence_transformers import SentenceTransformer, util
|
| 928 |
+
|
| 929 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 930 |
+
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
| 931 |
+
self.retrieval_model_name = rank_method
|
| 932 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
| 933 |
+
query = self.retrieval_model.encode(query)
|
| 934 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 935 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 936 |
+
return idx
|
| 937 |
+
|
| 938 |
+
def get_distance_openai(corpus, query):
|
| 939 |
+
import openai
|
| 940 |
+
from sentence_transformers import util
|
| 941 |
+
|
| 942 |
+
openai.api_key = self.open_api_config.get("api_key", "")
|
| 943 |
+
openai.api_base = self.open_api_config.get(
|
| 944 |
+
"api_base", "https://api.openai.com/v1"
|
| 945 |
+
)
|
| 946 |
+
openai.api_type = self.open_api_config.get("api_type", "open_ai")
|
| 947 |
+
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
|
| 948 |
+
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
|
| 949 |
+
|
| 950 |
+
def get_embed(text):
|
| 951 |
+
return openai.Embedding.create(
|
| 952 |
+
input=[text.replace("\n", " ")], engine=engine
|
| 953 |
+
)["LongBench"][0]["embedding"]
|
| 954 |
+
|
| 955 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
| 956 |
+
query = get_embed(query)
|
| 957 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 958 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 959 |
+
return idx
|
| 960 |
+
|
| 961 |
+
def get_distance_sentbert_bge(corpus, query):
|
| 962 |
+
from sentence_transformers import SentenceTransformer, util
|
| 963 |
+
|
| 964 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 965 |
+
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
| 966 |
+
self.retrieval_model_name = rank_method
|
| 967 |
+
doc_embeds = self.retrieval_model.encode(
|
| 968 |
+
[i for i in corpus], normalize_embeddings=True
|
| 969 |
+
)
|
| 970 |
+
query = self.retrieval_model.encode(query, normalize_embeddings=True)
|
| 971 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 972 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 973 |
+
return idx
|
| 974 |
+
|
| 975 |
+
def get_distance_bge_ranker(corpus, query):
|
| 976 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 977 |
+
|
| 978 |
+
pairs = [[i, query] for i in corpus]
|
| 979 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 980 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
|
| 981 |
+
model = (
|
| 982 |
+
AutoModelForSequenceClassification.from_pretrained(
|
| 983 |
+
"BAAI/bge-reranker-large"
|
| 984 |
+
)
|
| 985 |
+
.eval()
|
| 986 |
+
.to(self.device)
|
| 987 |
+
)
|
| 988 |
+
self.retrieval_model = [tokenizer, model]
|
| 989 |
+
self.retrieval_model_name = rank_method
|
| 990 |
+
with torch.no_grad():
|
| 991 |
+
inputs = self.retrieval_model[0](
|
| 992 |
+
pairs,
|
| 993 |
+
padding=True,
|
| 994 |
+
truncation=True,
|
| 995 |
+
return_tensors="pt",
|
| 996 |
+
max_length=512,
|
| 997 |
+
).to(self.device)
|
| 998 |
+
scores = (
|
| 999 |
+
self.retrieval_model[1](**inputs, return_dict=True)
|
| 1000 |
+
.logits.view(
|
| 1001 |
+
-1,
|
| 1002 |
+
)
|
| 1003 |
+
.float()
|
| 1004 |
+
)
|
| 1005 |
+
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
|
| 1006 |
+
return idx
|
| 1007 |
+
|
| 1008 |
+
def get_distance_bge_llmembedder(corpus, query):
|
| 1009 |
+
from transformers import AutoModel, AutoTokenizer
|
| 1010 |
+
|
| 1011 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 1012 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
|
| 1013 |
+
model = (
|
| 1014 |
+
AutoModel.from_pretrained("BAAI/llm-embedder")
|
| 1015 |
+
.eval()
|
| 1016 |
+
.to(self.device)
|
| 1017 |
+
)
|
| 1018 |
+
self.retrieval_model = [tokenizer, model]
|
| 1019 |
+
self.retrieval_model_name = rank_method
|
| 1020 |
+
|
| 1021 |
+
instruction_qa_query = (
|
| 1022 |
+
"Represent this query for retrieving relevant documents: "
|
| 1023 |
+
)
|
| 1024 |
+
instruction_qa_key = "Represent this document for retrieval: "
|
| 1025 |
+
queries = [instruction_qa_query + query for _ in corpus]
|
| 1026 |
+
keys = [instruction_qa_key + key for key in corpus]
|
| 1027 |
+
with torch.no_grad():
|
| 1028 |
+
query_inputs = self.retrieval_model[0](
|
| 1029 |
+
queries,
|
| 1030 |
+
padding=True,
|
| 1031 |
+
truncation=True,
|
| 1032 |
+
return_tensors="pt",
|
| 1033 |
+
max_length=512,
|
| 1034 |
+
).to(self.device)
|
| 1035 |
+
key_inputs = self.retrieval_model[0](
|
| 1036 |
+
keys,
|
| 1037 |
+
padding=True,
|
| 1038 |
+
truncation=True,
|
| 1039 |
+
return_tensors="pt",
|
| 1040 |
+
max_length=512,
|
| 1041 |
+
).to(self.device)
|
| 1042 |
+
query_outputs = self.retrieval_model[1](**query_inputs)
|
| 1043 |
+
key_outputs = self.retrieval_model[1](**key_inputs)
|
| 1044 |
+
# CLS pooling
|
| 1045 |
+
query_embeddings = query_outputs.last_hidden_state[:, 0]
|
| 1046 |
+
key_embeddings = key_outputs.last_hidden_state[:, 0]
|
| 1047 |
+
# Normalize
|
| 1048 |
+
query_embeddings = torch.nn.functional.normalize(
|
| 1049 |
+
query_embeddings, p=2, dim=1
|
| 1050 |
+
)
|
| 1051 |
+
key_embeddings = torch.nn.functional.normalize(
|
| 1052 |
+
key_embeddings, p=2, dim=1
|
| 1053 |
+
)
|
| 1054 |
+
similarity = query_embeddings @ key_embeddings.T
|
| 1055 |
+
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
|
| 1056 |
+
return idx
|
| 1057 |
+
|
| 1058 |
+
def get_distance_jinza(corpus, query):
|
| 1059 |
+
from numpy.linalg import norm
|
| 1060 |
+
|
| 1061 |
+
from transformers import AutoModel
|
| 1062 |
+
|
| 1063 |
+
def cos_sim(a, b):
|
| 1064 |
+
return (a @ b.T) / (norm(a) * norm(b))
|
| 1065 |
+
|
| 1066 |
+
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
|
| 1067 |
+
model = (
|
| 1068 |
+
AutoModel.from_pretrained(
|
| 1069 |
+
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
|
| 1070 |
+
)
|
| 1071 |
+
.eval()
|
| 1072 |
+
.to(self.device)
|
| 1073 |
+
)
|
| 1074 |
+
self.retrieval_model = model
|
| 1075 |
+
self.retrieval_model_name = rank_method
|
| 1076 |
+
|
| 1077 |
+
doc_embeds = self.retrieval_model.encode(corpus)
|
| 1078 |
+
query = self.retrieval_model.encode(query)
|
| 1079 |
+
doc_scores = cos_sim(doc_embeds, query)
|
| 1080 |
+
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
|
| 1081 |
+
return idx
|
| 1082 |
+
|
| 1083 |
+
def get_distance_voyageai(corpus, query):
|
| 1084 |
+
import voyageai
|
| 1085 |
+
from sentence_transformers import util
|
| 1086 |
+
|
| 1087 |
+
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
|
| 1088 |
+
|
| 1089 |
+
def get_embed(text):
|
| 1090 |
+
return voyageai.get_embedding(text, model="voyage-01")
|
| 1091 |
+
|
| 1092 |
+
doc_embeds = [get_embed(i) for i in corpus]
|
| 1093 |
+
query = get_embed(query)
|
| 1094 |
+
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
|
| 1095 |
+
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
|
| 1096 |
+
return idx
|
| 1097 |
+
|
| 1098 |
+
def get_distance_cohere(corpus, query):
|
| 1099 |
+
import cohere
|
| 1100 |
+
|
| 1101 |
+
api_key = self.open_api_config.get("cohere_api_key", "")
|
| 1102 |
+
co = cohere.Client(api_key)
|
| 1103 |
+
results = co.rerank(
|
| 1104 |
+
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
|
| 1105 |
+
)
|
| 1106 |
+
c_map = {jj: ii for ii, jj in enumerate(corpus)}
|
| 1107 |
+
doc_rank = [c_map[ii.document["text"]] for ii in results]
|
| 1108 |
+
idx = [(ii, 0) for ii in doc_rank]
|
| 1109 |
+
return idx
|
| 1110 |
+
|
| 1111 |
+
def get_distance_longllmlingua(corpus, query):
|
| 1112 |
+
context_ppl = [
|
| 1113 |
+
self.get_condition_ppl(
|
| 1114 |
+
d,
|
| 1115 |
+
query
|
| 1116 |
+
+ " We can get the answer to this question in the given documents.",
|
| 1117 |
+
condition_in_question,
|
| 1118 |
+
)
|
| 1119 |
+
- dl * 2 / 250 * 0
|
| 1120 |
+
for d, dl in zip(corpus, context_tokens_length)
|
| 1121 |
+
]
|
| 1122 |
+
sort_direct = -1 if condition_in_question == "none" else 1
|
| 1123 |
+
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
|
| 1124 |
+
return ys
|
| 1125 |
+
|
| 1126 |
+
method = None
|
| 1127 |
+
if rank_method == "bm25":
|
| 1128 |
+
method = get_distance_bm25
|
| 1129 |
+
elif rank_method == "gzip":
|
| 1130 |
+
method = get_distance_gzip
|
| 1131 |
+
elif rank_method == "sentbert":
|
| 1132 |
+
method = get_distance_sentbert
|
| 1133 |
+
elif rank_method == "openai":
|
| 1134 |
+
method = get_distance_openai
|
| 1135 |
+
elif rank_method in ["longllmlingua", "llmlingua"]:
|
| 1136 |
+
method = get_distance_longllmlingua
|
| 1137 |
+
elif rank_method == "bge":
|
| 1138 |
+
method = get_distance_sentbert_bge
|
| 1139 |
+
elif rank_method == "bge_reranker":
|
| 1140 |
+
method = get_distance_bge_ranker
|
| 1141 |
+
elif rank_method == "bge_llmembedder":
|
| 1142 |
+
method = get_distance_bge_llmembedder
|
| 1143 |
+
elif rank_method == "jinza":
|
| 1144 |
+
method = get_distance_jinza
|
| 1145 |
+
elif rank_method == "voyageai":
|
| 1146 |
+
method = get_distance_voyageai
|
| 1147 |
+
elif rank_method == "cohere":
|
| 1148 |
+
method = get_distance_cohere
|
| 1149 |
+
return method(context, question)
|
| 1150 |
+
|