|
|
import os
|
|
|
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
|
|
import spaces
|
|
|
else:
|
|
|
class spaces:
|
|
|
@staticmethod
|
|
|
def GPU(func):
|
|
|
def wrapper(*args, **kwargs):
|
|
|
return func(*args, **kwargs)
|
|
|
return wrapper
|
|
|
import gradio as gr
|
|
|
from PIL import Image
|
|
|
from torchvision import transforms
|
|
|
from dataclasses import dataclass
|
|
|
import math
|
|
|
from typing import Callable
|
|
|
from pathlib import Path
|
|
|
|
|
|
import torch
|
|
|
import random
|
|
|
from tqdm import tqdm
|
|
|
from einops import rearrange, repeat
|
|
|
from diffusers import AutoencoderKL
|
|
|
from torch import Tensor, nn
|
|
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
|
|
from safetensors.torch import load_file
|
|
|
from diffusers import FluxTransformer2DModel
|
|
|
from pipeline_flux_de_distill import FluxPipeline
|
|
|
dtype = torch.bfloat16
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
class HFEmbedder(nn.Module):
|
|
|
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
|
|
super().__init__()
|
|
|
self.is_clip = version.startswith("openai")
|
|
|
self.max_length = max_length
|
|
|
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
|
|
|
|
|
if self.is_clip:
|
|
|
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
|
|
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
|
|
else:
|
|
|
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
|
|
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
|
|
|
|
|
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
|
|
|
|
|
def forward(self, text: list[str]) -> Tensor:
|
|
|
batch_encoding = self.tokenizer(
|
|
|
text,
|
|
|
truncation=True,
|
|
|
max_length=self.max_length,
|
|
|
return_length=False,
|
|
|
return_overflowing_tokens=False,
|
|
|
padding="max_length",
|
|
|
return_tensors="pt",
|
|
|
)
|
|
|
|
|
|
outputs = self.hf_module(
|
|
|
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
|
|
attention_mask=None,
|
|
|
output_hidden_states=False,
|
|
|
)
|
|
|
return outputs[self.output_key]
|
|
|
|
|
|
|
|
|
model_path = "camenduru/FLUX.1-dev-diffusers"
|
|
|
transformer = FluxTransformer2DModel.from_pretrained("InstantX/flux-dev-de-distill-diffusers", torch_dtype=torch.bfloat16)
|
|
|
pipeline = FluxPipeline.from_pretrained(model_path, transformer=transformer, torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
|
|
q, k = apply_rope(q, k, pe)
|
|
|
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
|
|
|
|
|
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
def rope(pos, dim, theta):
|
|
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
|
|
omega = 1.0 / (theta ** scale)
|
|
|
|
|
|
|
|
|
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
|
|
|
|
|
cos_out = torch.cos(out)
|
|
|
sin_out = torch.sin(out)
|
|
|
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
|
|
|
|
|
|
|
|
b, n, d, _ = out.shape
|
|
|
out = out.view(b, n, d, 2, 2)
|
|
|
|
|
|
return out.float()
|
|
|
|
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
|
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
|
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
|
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
|
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
|
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
|
|
|
|
|
|
|
|
class EmbedND(nn.Module):
|
|
|
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
|
|
super().__init__()
|
|
|
self.dim = dim
|
|
|
self.theta = theta
|
|
|
self.axes_dim = axes_dim
|
|
|
|
|
|
def forward(self, ids: Tensor) -> Tensor:
|
|
|
n_axes = ids.shape[-1]
|
|
|
emb = torch.cat(
|
|
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
|
|
dim=-3,
|
|
|
)
|
|
|
|
|
|
return emb.unsqueeze(1)
|
|
|
|
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
|
|
"""
|
|
|
Create sinusoidal timestep embeddings.
|
|
|
:param t: a 1-D Tensor of N indices, one per batch element.
|
|
|
These may be fractional.
|
|
|
:param dim: the dimension of the output.
|
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
|
:return: an (N, D) Tensor of positional embeddings.
|
|
|
"""
|
|
|
t = time_factor * t
|
|
|
half = dim // 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
|
|
|
|
|
args = t[:, None].float() * freqs[None]
|
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
|
if dim % 2:
|
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
|
if torch.is_floating_point(t):
|
|
|
embedding = embedding.to(t)
|
|
|
return embedding
|
|
|
|
|
|
|
|
|
class MLPEmbedder(nn.Module):
|
|
|
def __init__(self, in_dim: int, hidden_dim: int):
|
|
|
super().__init__()
|
|
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
|
|
self.silu = nn.SiLU()
|
|
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
|
return self.out_layer(self.silu(self.in_layer(x)))
|
|
|
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
|
def __init__(self, dim: int):
|
|
|
super().__init__()
|
|
|
self.scale = nn.Parameter(torch.ones(dim))
|
|
|
|
|
|
def forward(self, x: Tensor):
|
|
|
x_dtype = x.dtype
|
|
|
x = x.float()
|
|
|
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
|
|
return (x * rrms).to(dtype=x_dtype) * self.scale
|
|
|
|
|
|
|
|
|
class QKNorm(torch.nn.Module):
|
|
|
def __init__(self, dim: int):
|
|
|
super().__init__()
|
|
|
self.query_norm = RMSNorm(dim)
|
|
|
self.key_norm = RMSNorm(dim)
|
|
|
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
|
|
q = self.query_norm(q)
|
|
|
k = self.key_norm(k)
|
|
|
return q.to(v), k.to(v)
|
|
|
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
head_dim = dim // num_heads
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
self.norm = QKNorm(head_dim)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
|
|
qkv = self.qkv(x)
|
|
|
|
|
|
B, L, _ = qkv.shape
|
|
|
qkv = qkv.view(B, L, 3, self.num_heads, -1)
|
|
|
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
|
|
q, k = self.norm(q, k, v)
|
|
|
x = attention(q, k, v, pe=pe)
|
|
|
x = self.proj(x)
|
|
|
return x
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class ModulationOut:
|
|
|
shift: Tensor
|
|
|
scale: Tensor
|
|
|
gate: Tensor
|
|
|
|
|
|
|
|
|
class Modulation(nn.Module):
|
|
|
def __init__(self, dim: int, double: bool):
|
|
|
super().__init__()
|
|
|
self.is_double = double
|
|
|
self.multiplier = 6 if double else 3
|
|
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
|
|
|
|
|
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
|
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
|
|
|
|
|
return (
|
|
|
ModulationOut(*out[:3]),
|
|
|
ModulationOut(*out[3:]) if self.is_double else None,
|
|
|
)
|
|
|
|
|
|
|
|
|
class DoubleStreamBlock(nn.Module):
|
|
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
|
|
super().__init__()
|
|
|
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
|
self.num_heads = num_heads
|
|
|
self.hidden_size = hidden_size
|
|
|
self.img_mod = Modulation(hidden_size, double=True)
|
|
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
|
|
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
self.img_mlp = nn.Sequential(
|
|
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
|
|
nn.GELU(approximate="tanh"),
|
|
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
|
|
)
|
|
|
|
|
|
self.txt_mod = Modulation(hidden_size, double=True)
|
|
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
|
|
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
self.txt_mlp = nn.Sequential(
|
|
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
|
|
nn.GELU(approximate="tanh"),
|
|
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
|
|
)
|
|
|
|
|
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
|
|
img_mod1, img_mod2 = self.img_mod(vec)
|
|
|
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
|
|
|
|
|
|
|
|
img_modulated = self.img_norm1(img)
|
|
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
|
|
img_qkv = self.img_attn.qkv(img_modulated)
|
|
|
|
|
|
B, L, _ = img_qkv.shape
|
|
|
H = self.num_heads
|
|
|
D = img_qkv.shape[-1] // (3 * H)
|
|
|
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
|
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
|
|
|
|
|
|
|
|
txt_modulated = self.txt_norm1(txt)
|
|
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
|
|
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
|
|
|
|
|
B, L, _ = txt_qkv.shape
|
|
|
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
|
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
|
|
|
|
|
|
|
|
q = torch.cat((txt_q, img_q), dim=2)
|
|
|
k = torch.cat((txt_k, img_k), dim=2)
|
|
|
v = torch.cat((txt_v, img_v), dim=2)
|
|
|
|
|
|
attn = attention(q, k, v, pe=pe)
|
|
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
|
|
|
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
|
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
|
|
|
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
|
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
|
|
return img, txt
|
|
|
|
|
|
|
|
|
class SingleStreamBlock(nn.Module):
|
|
|
"""
|
|
|
A DiT block with parallel linear layers as described in
|
|
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
hidden_size: int,
|
|
|
num_heads: int,
|
|
|
mlp_ratio: float = 4.0,
|
|
|
qk_scale: float | None = None,
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.hidden_dim = hidden_size
|
|
|
self.num_heads = num_heads
|
|
|
head_dim = hidden_size // num_heads
|
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
|
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
|
|
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
|
|
|
|
|
self.norm = QKNorm(head_dim)
|
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
|
|
|
self.mlp_act = nn.GELU(approximate="tanh")
|
|
|
self.modulation = Modulation(hidden_size, double=False)
|
|
|
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
|
|
mod, _ = self.modulation(vec)
|
|
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
|
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
|
|
|
|
|
|
|
|
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
|
|
|
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
|
|
q, k = self.norm(q, k, v)
|
|
|
|
|
|
|
|
|
attn = attention(q, k, v, pe=pe)
|
|
|
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
|
|
return x + mod.gate * output
|
|
|
|
|
|
|
|
|
class LastLayer(nn.Module):
|
|
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
|
|
super().__init__()
|
|
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
|
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
|
|
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
|
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
|
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
|
|
x = self.linear(x)
|
|
|
return x
|
|
|
|
|
|
|
|
|
class FluxParams:
|
|
|
in_channels: int = 64
|
|
|
vec_in_dim: int = 768
|
|
|
context_in_dim: int = 4096
|
|
|
hidden_size: int = 3072
|
|
|
mlp_ratio: float = 4.0
|
|
|
num_heads: int = 24
|
|
|
depth: int = 19
|
|
|
depth_single_blocks: int = 38
|
|
|
axes_dim: list = [16, 56, 56]
|
|
|
theta: int = 10_000
|
|
|
qkv_bias: bool = True
|
|
|
guidance_embed: bool = True
|
|
|
|
|
|
|
|
|
class Flux(nn.Module):
|
|
|
"""
|
|
|
Transformer model for flow matching on sequences.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, params = FluxParams()):
|
|
|
super().__init__()
|
|
|
|
|
|
self.params = params
|
|
|
self.in_channels = params.in_channels
|
|
|
self.out_channels = self.in_channels
|
|
|
if params.hidden_size % params.num_heads != 0:
|
|
|
raise ValueError(
|
|
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
|
|
)
|
|
|
pe_dim = params.hidden_size // params.num_heads
|
|
|
if sum(params.axes_dim) != pe_dim:
|
|
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
|
|
self.hidden_size = params.hidden_size
|
|
|
self.num_heads = params.num_heads
|
|
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
|
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
|
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
|
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
|
|
|
|
|
|
|
|
|
|
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
|
|
|
|
|
self.double_blocks = nn.ModuleList(
|
|
|
[
|
|
|
DoubleStreamBlock(
|
|
|
self.hidden_size,
|
|
|
self.num_heads,
|
|
|
mlp_ratio=params.mlp_ratio,
|
|
|
qkv_bias=params.qkv_bias,
|
|
|
)
|
|
|
for _ in range(params.depth)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
self.single_blocks = nn.ModuleList(
|
|
|
[
|
|
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
|
|
for _ in range(params.depth_single_blocks)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
img: Tensor,
|
|
|
img_ids: Tensor,
|
|
|
txt: Tensor,
|
|
|
txt_ids: Tensor,
|
|
|
timesteps: Tensor,
|
|
|
y: Tensor,
|
|
|
guidance: Tensor | None = None,
|
|
|
use_guidance_vec = True,
|
|
|
) -> Tensor:
|
|
|
if img.ndim != 3 or txt.ndim != 3:
|
|
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
|
|
|
|
|
|
|
|
img = self.img_in(img)
|
|
|
vec = self.time_in(timestep_embedding(timesteps, 256))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vec = vec + self.vector_in(y)
|
|
|
txt = self.txt_in(txt)
|
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
|
pe = self.pe_embedder(ids)
|
|
|
|
|
|
for block in self.double_blocks:
|
|
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
|
|
|
|
|
img = torch.cat((txt, img), 1)
|
|
|
for block in self.single_blocks:
|
|
|
img = block(img, vec=vec, pe=pe)
|
|
|
img = img[:, txt.shape[1] :, ...]
|
|
|
|
|
|
img = self.final_layer(img, vec)
|
|
|
return img
|
|
|
|
|
|
|
|
|
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
|
|
bs, c, h, w = img.shape
|
|
|
if bs == 1 and not isinstance(prompt, str):
|
|
|
bs = len(prompt)
|
|
|
|
|
|
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
|
|
if img.shape[0] == 1 and bs > 1:
|
|
|
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
|
|
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3)
|
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
|
|
|
|
if isinstance(prompt, str):
|
|
|
prompt = [prompt]
|
|
|
txt = t5(prompt)
|
|
|
if txt.shape[0] == 1 and bs > 1:
|
|
|
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
|
|
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
|
|
|
|
|
vec = clip(prompt)
|
|
|
if vec.shape[0] == 1 and bs > 1:
|
|
|
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
|
|
|
|
|
return {
|
|
|
"img": img,
|
|
|
"img_ids": img_ids.to(img.device),
|
|
|
"txt": txt.to(img.device),
|
|
|
"txt_ids": txt_ids.to(img.device),
|
|
|
"vec": vec.to(img.device),
|
|
|
}
|
|
|
|
|
|
|
|
|
def time_shift(mu: float, sigma: float, t: Tensor):
|
|
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
|
|
|
|
|
|
|
|
def get_lin_function(
|
|
|
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
|
|
) -> Callable[[float], float]:
|
|
|
m = (y2 - y1) / (x2 - x1)
|
|
|
b = y1 - m * x1
|
|
|
return lambda x: m * x + b
|
|
|
|
|
|
|
|
|
def get_schedule(
|
|
|
num_steps: int,
|
|
|
image_seq_len: int,
|
|
|
base_shift: float = 0.5,
|
|
|
max_shift: float = 1.15,
|
|
|
shift: bool = True,
|
|
|
) -> list[float]:
|
|
|
|
|
|
timesteps = torch.linspace(1, 0, num_steps + 1)
|
|
|
|
|
|
|
|
|
if shift:
|
|
|
|
|
|
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
|
|
timesteps = time_shift(mu, 1.0, timesteps)
|
|
|
|
|
|
return timesteps.tolist()
|
|
|
|
|
|
|
|
|
def denoise(
|
|
|
model: Flux,
|
|
|
|
|
|
img: Tensor,
|
|
|
img_ids: Tensor,
|
|
|
txt: Tensor,
|
|
|
txt_ids: Tensor,
|
|
|
vec: Tensor,
|
|
|
|
|
|
timesteps: list[float],
|
|
|
guidance: float = 4.0,
|
|
|
use_cfg_guidance = False,
|
|
|
):
|
|
|
|
|
|
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
|
|
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:])):
|
|
|
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
|
|
|
|
|
if use_cfg_guidance:
|
|
|
half_x = img[:len(img)//2]
|
|
|
img = torch.cat([half_x, half_x], dim=0)
|
|
|
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
|
|
|
|
|
pred = model(
|
|
|
img=img,
|
|
|
img_ids=img_ids,
|
|
|
txt=txt,
|
|
|
txt_ids=txt_ids,
|
|
|
y=vec,
|
|
|
timesteps=t_vec,
|
|
|
guidance=guidance_vec,
|
|
|
use_guidance_vec=not use_cfg_guidance,
|
|
|
)
|
|
|
|
|
|
if use_cfg_guidance:
|
|
|
uncond, cond = pred.chunk(2, dim=0)
|
|
|
model_output = uncond + guidance * (cond - uncond)
|
|
|
pred = torch.cat([model_output, model_output], dim=0)
|
|
|
|
|
|
img = img + (t_prev - t_curr) * pred
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
|
|
return rearrange(
|
|
|
x,
|
|
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
|
|
h=math.ceil(height / 16),
|
|
|
w=math.ceil(width / 16),
|
|
|
ph=2,
|
|
|
pw=2,
|
|
|
)
|
|
|
|
|
|
@dataclass
|
|
|
class SamplingOptions:
|
|
|
prompt: str
|
|
|
width: int
|
|
|
height: int
|
|
|
guidance: float
|
|
|
seed: int | None
|
|
|
|
|
|
|
|
|
def get_image(image) -> torch.Tensor | None:
|
|
|
if image is None:
|
|
|
return None
|
|
|
image = Image.fromarray(image).convert("RGB")
|
|
|
|
|
|
transform = transforms.Compose([
|
|
|
transforms.ToTensor(),
|
|
|
transforms.Lambda(lambda x: 2.0 * x - 1.0),
|
|
|
])
|
|
|
img: torch.Tensor = transform(image)
|
|
|
return img[None, ...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EmptyInitWrapper(torch.overrides.TorchFunctionMode):
|
|
|
def __init__(self, device=None):
|
|
|
self.device = device
|
|
|
|
|
|
def __torch_function__(self, func, types, args=(), kwargs=None):
|
|
|
kwargs = kwargs or {}
|
|
|
if getattr(func, "__module__", None) == "torch.nn.init":
|
|
|
if "tensor" in kwargs:
|
|
|
return kwargs["tensor"]
|
|
|
else:
|
|
|
return args[0]
|
|
|
if (
|
|
|
self.device is not None
|
|
|
and func in torch.utils._device._device_constructors()
|
|
|
and kwargs.get("device") is None
|
|
|
):
|
|
|
kwargs["device"] = self.device
|
|
|
return func(*args, **kwargs)
|
|
|
|
|
|
with EmptyInitWrapper():
|
|
|
model = Flux().to(dtype=torch.bfloat16, device=device)
|
|
|
|
|
|
sd = load_file(f"{model_path}/consolidated_s6700.safetensors")
|
|
|
Path(f"{model_path}/consolidated_s6700.safetensors").unlink()
|
|
|
sd = {k.replace("model.", ""): v for k, v in sd.items()}
|
|
|
result = model.load_state_dict(sd)
|
|
|
|
|
|
@spaces.GPU(duration=120)
|
|
|
@torch.inference_mode()
|
|
|
def generate_image(
|
|
|
prompt, neg_prompt, num_steps ,width, height, guidance, seed,
|
|
|
do_img2img, init_image, image2image_strength, resize_img,
|
|
|
progress=gr.Progress(track_tqdm=True),
|
|
|
):
|
|
|
if seed == 0:
|
|
|
seed = int(random.random() * 1000000)
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
"""torch_device = torch.device(device)
|
|
|
|
|
|
if do_img2img and init_image is not None:
|
|
|
init_image = get_image(init_image)
|
|
|
if resize_img:
|
|
|
init_image = torch.nn.functional.interpolate(init_image, (height, width))
|
|
|
else:
|
|
|
h, w = init_image.shape[-2:]
|
|
|
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
|
|
|
height = init_image.shape[-2]
|
|
|
width = init_image.shape[-1]
|
|
|
init_image = ae.encode(init_image.to(torch_device)).latent_dist.sample()
|
|
|
init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
|
|
|
|
|
|
# num_steps = 28
|
|
|
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
|
|
|
|
|
if do_img2img and init_image is not None:
|
|
|
t_idx = int((1 - image2image_strength) * num_steps)
|
|
|
t = timesteps[t_idx]
|
|
|
timesteps = timesteps[t_idx:]
|
|
|
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
|
|
|
|
|
inp = prepare(t5=t5, clip=clip, img=x, prompt=[neg_prompt, prompt])
|
|
|
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance, use_cfg_guidance=True)
|
|
|
|
|
|
# with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
|
|
|
# print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
|
|
|
|
|
x = unpack(x.float(), height, width)
|
|
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
|
|
x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
|
|
|
x = ae.decode(x).sample
|
|
|
|
|
|
x = x.clamp(-1, 1)
|
|
|
x = rearrange(x[0], "c h w -> h w c")
|
|
|
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())"""
|
|
|
|
|
|
img = pipeline(
|
|
|
prompt=prompt,
|
|
|
negative_prompt=neg_prompt,
|
|
|
guidance_scale=guidance,
|
|
|
num_inference_steps=num_steps,
|
|
|
width=width,
|
|
|
height=height,
|
|
|
generator=generator,
|
|
|
).images[0]
|
|
|
|
|
|
return img, seed
|
|
|
|
|
|
def create_demo():
|
|
|
with gr.Blocks(theme="bethecloud/storj_theme", fill_width=True) as demo:
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
|
|
|
neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
|
|
|
num_steps = gr.Slider(minimum=1, maximum=50, step=1, label="num_steps", value=28)
|
|
|
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1024)
|
|
|
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=1024)
|
|
|
guidance = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, label="Guidance", value=3.5)
|
|
|
seed = gr.Number(label="Seed", precision=-1)
|
|
|
do_img2img = gr.Checkbox(label="Image to Image", value=False, visible=False)
|
|
|
init_image = gr.Image(label="Input Image", visible=False)
|
|
|
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
|
|
|
resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
|
|
|
generate_button = gr.Button("Generate")
|
|
|
|
|
|
with gr.Column():
|
|
|
output_image = gr.Image(label="Generated Image")
|
|
|
output_seed = gr.Text(label="Used Seed")
|
|
|
|
|
|
do_img2img.change(
|
|
|
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
|
|
|
inputs=[do_img2img],
|
|
|
outputs=[init_image, image2image_strength, resize_img]
|
|
|
)
|
|
|
|
|
|
generate_button.click(
|
|
|
fn=generate_image,
|
|
|
inputs=[prompt, neg_prompt, num_steps,width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img],
|
|
|
outputs=[output_image, output_seed]
|
|
|
)
|
|
|
|
|
|
examples = [
|
|
|
"a tiny astronaut hatching from an egg on the moon",
|
|
|
"a cat holding a sign that says hello world",
|
|
|
"an anime illustration of a wiener schnitzel",
|
|
|
]
|
|
|
|
|
|
return demo
|
|
|
|
|
|
demo = create_demo()
|
|
|
demo.launch(share=True) |