|
|
from transformers import SeamlessM4TFeatureExtractor |
|
|
from transformers import Wav2Vec2BertModel |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import numpy as np |
|
|
import librosa |
|
|
import os |
|
|
import pickle |
|
|
import math |
|
|
import json |
|
|
import safetensors |
|
|
import json5 |
|
|
|
|
|
from startts.examples.ftchar.models.codec.kmeans.repcodec_model import RepCodec |
|
|
|
|
|
class JsonHParams: |
|
|
def __init__(self, **kwargs): |
|
|
for k, v in kwargs.items(): |
|
|
if type(v) == dict: |
|
|
v = JsonHParams(**v) |
|
|
self[k] = v |
|
|
|
|
|
def keys(self): |
|
|
return self.__dict__.keys() |
|
|
|
|
|
def items(self): |
|
|
return self.__dict__.items() |
|
|
|
|
|
def values(self): |
|
|
return self.__dict__.values() |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.__dict__) |
|
|
|
|
|
def __getitem__(self, key): |
|
|
return getattr(self, key) |
|
|
|
|
|
def __setitem__(self, key, value): |
|
|
return setattr(self, key, value) |
|
|
|
|
|
def __contains__(self, key): |
|
|
return key in self.__dict__ |
|
|
|
|
|
def __repr__(self): |
|
|
return self.__dict__.__repr__() |
|
|
|
|
|
|
|
|
def _load_config(config_fn, lowercase=False): |
|
|
"""Load configurations into a dictionary |
|
|
|
|
|
Args: |
|
|
config_fn (str): path to configuration file |
|
|
lowercase (bool, optional): whether changing keys to lower case. Defaults to False. |
|
|
|
|
|
Returns: |
|
|
dict: dictionary that stores configurations |
|
|
""" |
|
|
with open(config_fn, "r") as f: |
|
|
data = f.read() |
|
|
config_ = json5.loads(data) |
|
|
if "base_config" in config_: |
|
|
|
|
|
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"]) |
|
|
p_config_ = _load_config(p_config_path) |
|
|
config_ = override_config(p_config_, config_) |
|
|
if lowercase: |
|
|
|
|
|
config_ = get_lowercase_keys_config(config_) |
|
|
return config_ |
|
|
|
|
|
|
|
|
def load_config(config_fn, lowercase=False): |
|
|
"""Load configurations into a dictionary |
|
|
|
|
|
Args: |
|
|
config_fn (str): path to configuration file |
|
|
lowercase (bool, optional): _description_. Defaults to False. |
|
|
|
|
|
Returns: |
|
|
JsonHParams: an object that stores configurations |
|
|
""" |
|
|
config_ = _load_config(config_fn, lowercase=lowercase) |
|
|
|
|
|
cfg = JsonHParams(**config_) |
|
|
return cfg |
|
|
|
|
|
class Extract_wav2vectbert: |
|
|
def __init__(self,device): |
|
|
|
|
|
self.semantic_model = Wav2Vec2BertModel.from_pretrained("./MaskGCT_model/w2v_bert/") |
|
|
self.semantic_model.eval() |
|
|
self.semantic_model.to(device) |
|
|
self.stat_mean_var = torch.load("./MaskGCT_model/wav2vec2bert_stats.pt") |
|
|
self.semantic_mean = self.stat_mean_var["mean"] |
|
|
self.semantic_std = torch.sqrt(self.stat_mean_var["var"]) |
|
|
self.semantic_mean = self.semantic_mean.to(device) |
|
|
self.semantic_std = self.semantic_std.to(device) |
|
|
self.processor = SeamlessM4TFeatureExtractor.from_pretrained( |
|
|
"./MaskGCT_model/w2v_bert/") |
|
|
self.device = device |
|
|
|
|
|
cfg_maskgct = load_config('./MaskGCT_model/maskgct.json') |
|
|
cfg = cfg_maskgct.model.semantic_codec |
|
|
self.semantic_code_ckpt = r'./MaskGCT_model/semantic_codec/model.safetensors' |
|
|
self.semantic_codec = RepCodec(cfg=cfg) |
|
|
self.semantic_codec.eval() |
|
|
self.semantic_codec.to(device) |
|
|
safetensors.torch.load_model(self.semantic_codec, self.semantic_code_ckpt) |
|
|
|
|
|
@torch.no_grad() |
|
|
def extract_features(self, speech): |
|
|
inputs = self.processor(speech, sampling_rate=16000, return_tensors="pt") |
|
|
input_features = inputs["input_features"] |
|
|
attention_mask = inputs["attention_mask"] |
|
|
return input_features, attention_mask |
|
|
|
|
|
@torch.no_grad() |
|
|
def extract_semantic_code(self, input_features, attention_mask): |
|
|
vq_emb = self.semantic_model( |
|
|
input_features=input_features, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=True, |
|
|
) |
|
|
feat = vq_emb.hidden_states[17] |
|
|
feat = (feat - self.semantic_mean.to(feat)) / self.semantic_std.to(feat) |
|
|
|
|
|
semantic_code, rec_feat = self.semantic_codec.quantize(feat) |
|
|
return semantic_code, rec_feat |
|
|
|
|
|
def feature_extract(self, prompt_speech): |
|
|
|
|
|
input_features, attention_mask = self.extract_features(prompt_speech) |
|
|
input_features = input_features.to(self.device) |
|
|
attention_mask = attention_mask.to(self.device) |
|
|
semantic_code, rec_feat = self.extract_semantic_code(input_features, attention_mask) |
|
|
return semantic_code,rec_feat |
|
|
|
|
|
if __name__=='__main__': |
|
|
speech_path = 'test/magi1.wav' |
|
|
speech = librosa.load(speech_path, sr=16000)[0] |
|
|
speech = np.c_[speech,speech,speech].T |
|
|
print(speech.shape) |
|
|
|
|
|
Extract_feature = Extract_wav2vectbert('cuda:0') |
|
|
semantic_code,rec_feat = Extract_feature.feature_extract(speech) |
|
|
print(semantic_code.shape,rec_feat.shape) |
|
|
|
|
|
|