|
|
import functools |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
import transformers |
|
|
from transformers import GPT2Config, LogitsProcessorList |
|
|
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model |
|
|
|
|
|
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions |
|
|
from transformers.utils.model_parallel_utils import (assert_device_map, |
|
|
get_device_map) |
|
|
|
|
|
from indextts.gpt.conformer_encoder import ConformerEncoder |
|
|
from indextts.gpt.perceiver import PerceiverResampler |
|
|
from indextts.utils.arch_util import AttentionBlock |
|
|
from indextts.utils.typical_sampling import TypicalLogitsWarper |
|
|
|
|
|
|
|
|
def null_position_embeddings(range, dim): |
|
|
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) |
|
|
|
|
|
|
|
|
class ResBlock(nn.Module): |
|
|
""" |
|
|
Basic residual convolutional block that uses GroupNorm. |
|
|
""" |
|
|
|
|
|
def __init__(self, chan): |
|
|
super().__init__() |
|
|
self.net = nn.Sequential( |
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
|
nn.GroupNorm(chan // 8, chan), |
|
|
nn.ReLU(), |
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
|
nn.GroupNorm(chan // 8, chan) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return F.relu(self.net(x) + x) |
|
|
|
|
|
|
|
|
class GPT2InferenceModel(GPT2PreTrainedModel): |
|
|
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False): |
|
|
super().__init__(config) |
|
|
|
|
|
self.transformer = gpt |
|
|
self.text_pos_embedding = text_pos_emb |
|
|
self.embeddings = embeddings |
|
|
self.final_norm = norm |
|
|
self.lm_head = nn.Sequential(norm, linear) |
|
|
self.kv_cache = kv_cache |
|
|
|
|
|
|
|
|
self.model_parallel = False |
|
|
self.device_map = None |
|
|
self.cached_mel_emb = None |
|
|
|
|
|
def parallelize(self, device_map=None): |
|
|
self.device_map = ( |
|
|
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count()))) |
|
|
if device_map is None |
|
|
else device_map |
|
|
) |
|
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
|
self.transformer.parallelize(self.device_map) |
|
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
|
self.model_parallel = True |
|
|
|
|
|
def deparallelize(self): |
|
|
self.transformer.deparallelize() |
|
|
self.transformer = self.transformer.to("cpu") |
|
|
self.lm_head = self.lm_head.to("cpu") |
|
|
self.model_parallel = False |
|
|
torch.cuda.empty_cache() |
|
|
if torch.backends.mps.is_available(): |
|
|
torch.mps.empty_cache() |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def store_mel_emb(self, mel_emb): |
|
|
self.cached_mel_emb = mel_emb |
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): |
|
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
if not self.kv_cache: |
|
|
past_key_values = None |
|
|
|
|
|
if past_key_values: |
|
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
if token_type_ids is not None: |
|
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 0) |
|
|
if past_key_values: |
|
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
else: |
|
|
position_ids = None |
|
|
return { |
|
|
"input_ids": input_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
"position_ids": position_ids, |
|
|
"attention_mask": attention_mask, |
|
|
"token_type_ids": token_type_ids, |
|
|
} |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids=None, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
token_type_ids=None, |
|
|
position_ids=None, |
|
|
head_mask=None, |
|
|
inputs_embeds=None, |
|
|
encoder_hidden_states=None, |
|
|
encoder_attention_mask=None, |
|
|
labels=None, |
|
|
use_cache=None, |
|
|
output_attentions=None, |
|
|
output_hidden_states=None, |
|
|
return_dict=None, |
|
|
): |
|
|
assert self.cached_mel_emb is not None |
|
|
assert inputs_embeds is None |
|
|
assert labels is None |
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
mel_len = self.cached_mel_emb.shape[1] |
|
|
if input_ids.shape[1] != 1: |
|
|
text_inputs = input_ids[:, mel_len:] |
|
|
text_emb = self.embeddings(text_inputs) |
|
|
text_emb = text_emb + self.text_pos_embedding(text_emb) |
|
|
if self.cached_mel_emb.shape[0] != text_emb.shape[0]: |
|
|
mel_emb = self.cached_mel_emb.repeat_interleave( |
|
|
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0 |
|
|
) |
|
|
else: |
|
|
mel_emb = self.cached_mel_emb |
|
|
emb = torch.cat([mel_emb, text_emb], dim=1) |
|
|
else: |
|
|
emb = self.embeddings(input_ids) |
|
|
emb = emb + self.text_pos_embedding.get_fixed_embedding( |
|
|
attention_mask.shape[1] - mel_len, attention_mask.device |
|
|
) |
|
|
transformer_outputs = self.transformer( |
|
|
inputs_embeds=emb, |
|
|
past_key_values=past_key_values, |
|
|
attention_mask=attention_mask, |
|
|
token_type_ids=token_type_ids, |
|
|
position_ids=position_ids, |
|
|
head_mask=head_mask, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
encoder_attention_mask=encoder_attention_mask, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
|
|
|
if self.model_parallel: |
|
|
if torch.backends.mps.is_available(): |
|
|
self.to(self.transformer.first_device) |
|
|
else: |
|
|
torch.cuda.set_device(self.transformer.first_device) |
|
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
|
|
if not return_dict: |
|
|
return (lm_logits,) + transformer_outputs[1:] |
|
|
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
|
loss=None, |
|
|
logits=lm_logits, |
|
|
past_key_values=transformer_outputs.past_key_values, |
|
|
hidden_states=transformer_outputs.hidden_states, |
|
|
attentions=transformer_outputs.attentions, |
|
|
cross_attentions=transformer_outputs.cross_attentions, |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _reorder_cache(past, beam_idx): |
|
|
""" |
|
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
|
""" |
|
|
return tuple( |
|
|
tuple( |
|
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
|
for past_state in layer_past |
|
|
) |
|
|
for layer_past in past |
|
|
) |
|
|
|
|
|
|
|
|
class ConditioningEncoder(nn.Module): |
|
|
def __init__(self, |
|
|
spec_dim, |
|
|
embedding_dim, |
|
|
attn_blocks=6, |
|
|
num_attn_heads=4, |
|
|
do_checkpointing=False, |
|
|
mean=False): |
|
|
super().__init__() |
|
|
attn = [] |
|
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) |
|
|
for a in range(attn_blocks): |
|
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads)) |
|
|
self.attn = nn.Sequential(*attn) |
|
|
self.dim = embedding_dim |
|
|
self.do_checkpointing = do_checkpointing |
|
|
self.mean = mean |
|
|
|
|
|
def forward(self, x): |
|
|
h = self.init(x) |
|
|
h = self.attn(h) |
|
|
if self.mean: |
|
|
return h.mean(dim=2) |
|
|
else: |
|
|
return h |
|
|
|
|
|
|
|
|
|
|
|
class LearnedPositionEmbeddings(nn.Module): |
|
|
def __init__(self, seq_len, model_dim, init=.02): |
|
|
super().__init__() |
|
|
self.emb = nn.Embedding(seq_len, model_dim) |
|
|
|
|
|
self.emb.weight.data.normal_(mean=0.0, std=init) |
|
|
|
|
|
def forward(self, x): |
|
|
sl = x.shape[1] |
|
|
return self.emb(torch.arange(0, sl, device=x.device)) |
|
|
|
|
|
def get_fixed_embedding(self, ind, dev): |
|
|
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) |
|
|
|
|
|
|
|
|
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing, activation_function): |
|
|
""" |
|
|
GPT-2 implemented by the HuggingFace library. |
|
|
""" |
|
|
from transformers import GPT2Config, GPT2Model |
|
|
gpt_config = GPT2Config(vocab_size=256, |
|
|
n_positions=max_mel_seq_len + max_text_seq_len, |
|
|
n_ctx=max_mel_seq_len + max_text_seq_len, |
|
|
n_embd=model_dim, |
|
|
n_layer=layers, |
|
|
n_head=heads, |
|
|
activation_function=activation_function or "gelu_new", |
|
|
gradient_checkpointing=checkpointing, |
|
|
use_cache=not checkpointing) |
|
|
gpt = GPT2Model(gpt_config) |
|
|
|
|
|
del gpt.wpe |
|
|
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) |
|
|
|
|
|
del gpt.wte |
|
|
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \ |
|
|
None, None |
|
|
|
|
|
|
|
|
class MelEncoder(nn.Module): |
|
|
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): |
|
|
super().__init__() |
|
|
self.channels = channels |
|
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), |
|
|
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]), |
|
|
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), |
|
|
nn.GroupNorm(channels // 16, channels // 2), |
|
|
nn.ReLU(), |
|
|
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]), |
|
|
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), |
|
|
nn.GroupNorm(channels // 8, channels), |
|
|
nn.ReLU(), |
|
|
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), |
|
|
) |
|
|
self.reduction = 4 |
|
|
|
|
|
def forward(self, x): |
|
|
for e in self.encoder: |
|
|
x = e(x) |
|
|
return x.permute(0, 2, 1) |
|
|
|
|
|
|
|
|
class UnifiedVoice(nn.Module): |
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1, |
|
|
mel_length_compression=1024, number_text_tokens=256, |
|
|
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193, |
|
|
train_solo_embeddings=False, use_mel_codes_as_input=True, |
|
|
checkpointing=True, types=1, activation_function=None, |
|
|
condition_num_latent=32, condition_type="perceiver", condition_module=None): |
|
|
""" |
|
|
Args: |
|
|
layers: Number of layers in transformer stack. |
|
|
model_dim: Operating dimensions of the transformer |
|
|
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 |
|
|
max_text_tokens: Maximum number of text tokens that will be encountered by model. |
|
|
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. |
|
|
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). |
|
|
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length. |
|
|
number_text_tokens: |
|
|
start_text_token: |
|
|
stop_text_token: |
|
|
number_mel_codes: |
|
|
start_mel_token: |
|
|
stop_mel_token: |
|
|
train_solo_embeddings: |
|
|
use_mel_codes_as_input: |
|
|
checkpointing: |
|
|
condition_type: perceiver, gst or default encoder |
|
|
""" |
|
|
super().__init__() |
|
|
self.number_text_tokens = number_text_tokens |
|
|
self.start_text_token = start_text_token |
|
|
self.stop_text_token = stop_text_token |
|
|
self.number_mel_codes = number_mel_codes |
|
|
self.start_mel_token = start_mel_token |
|
|
self.stop_mel_token = stop_mel_token |
|
|
self.layers = layers |
|
|
self.heads = heads |
|
|
self.max_mel_tokens = max_mel_tokens |
|
|
self.max_text_tokens = max_text_tokens |
|
|
self.model_dim = model_dim |
|
|
self.max_conditioning_inputs = max_conditioning_inputs |
|
|
self.mel_length_compression = mel_length_compression |
|
|
self.condition_type = condition_type |
|
|
self.cond_num = condition_num_latent |
|
|
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True) |
|
|
if condition_type == "perceiver": |
|
|
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads) |
|
|
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num) |
|
|
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder": |
|
|
self.conditioning_encoder = ConformerEncoder(input_size=100, |
|
|
output_size=condition_module['output_size'], |
|
|
linear_units=condition_module['linear_units'], |
|
|
attention_heads=condition_module['attention_heads'], |
|
|
num_blocks=condition_module['num_blocks'], |
|
|
input_layer=condition_module['input_layer']) |
|
|
if condition_type == "conformer_perceiver": |
|
|
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'], |
|
|
ff_mult=condition_module['perceiver_mult'], |
|
|
heads=condition_module['attention_heads'], |
|
|
num_latents=self.cond_num) |
|
|
else: |
|
|
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads, mean=True) |
|
|
|
|
|
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim) |
|
|
if use_mel_codes_as_input: |
|
|
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) |
|
|
else: |
|
|
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) |
|
|
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \ |
|
|
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs, |
|
|
self.max_text_tokens + 2, checkpointing, activation_function) |
|
|
if train_solo_embeddings: |
|
|
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) |
|
|
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) |
|
|
else: |
|
|
self.mel_solo_embedding = 0 |
|
|
self.text_solo_embedding = 0 |
|
|
|
|
|
self.final_norm = nn.LayerNorm(model_dim) |
|
|
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1) |
|
|
self.mel_head = nn.Linear(model_dim, self.number_mel_codes) |
|
|
|
|
|
|
|
|
embeddings = [self.text_embedding] |
|
|
if use_mel_codes_as_input: |
|
|
embeddings.append(self.mel_embedding) |
|
|
for module in embeddings: |
|
|
module.weight.data.normal_(mean=0.0, std=.02) |
|
|
|
|
|
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False): |
|
|
seq_length = self.max_mel_tokens + self.max_text_tokens + 2 |
|
|
gpt_config = GPT2Config( |
|
|
vocab_size=self.number_mel_codes, |
|
|
n_positions=seq_length, |
|
|
n_ctx=seq_length, |
|
|
n_embd=self.model_dim, |
|
|
n_layer=self.layers, |
|
|
n_head=self.heads, |
|
|
gradient_checkpointing=False, |
|
|
use_cache=True, |
|
|
) |
|
|
self.inference_model = GPT2InferenceModel( |
|
|
gpt_config, |
|
|
self.gpt, |
|
|
self.mel_pos_embedding, |
|
|
self.mel_embedding, |
|
|
self.final_norm, |
|
|
self.mel_head, |
|
|
kv_cache=kv_cache, |
|
|
) |
|
|
if use_deepspeed and half and torch.cuda.is_available(): |
|
|
import deepspeed |
|
|
self.ds_engine = deepspeed.init_inference(model=self.inference_model, |
|
|
mp_size=1, |
|
|
replace_with_kernel_inject=False, |
|
|
dtype=torch.float16) |
|
|
self.inference_model = self.ds_engine.module.eval() |
|
|
elif use_deepspeed and torch.cuda.is_available(): |
|
|
import deepspeed |
|
|
self.ds_engine = deepspeed.init_inference(model=self.inference_model, |
|
|
mp_size=1, |
|
|
replace_with_kernel_inject=False, |
|
|
dtype=torch.float32) |
|
|
self.inference_model = self.ds_engine.module.eval() |
|
|
else: |
|
|
self.inference_model = self.inference_model.eval() |
|
|
|
|
|
|
|
|
self.gpt.wte = self.mel_embedding |
|
|
|
|
|
def build_aligned_inputs_and_targets(self, input, start_token, stop_token): |
|
|
inp = F.pad(input, (1, 0), value=start_token) |
|
|
tar = F.pad(input, (0, 1), value=stop_token) |
|
|
return inp, tar |
|
|
|
|
|
def set_mel_padding(self, mel_input_tokens, mel_lengths): |
|
|
""" |
|
|
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in |
|
|
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required |
|
|
preformatting to create a working TTS model. |
|
|
""" |
|
|
for b in range(len(mel_lengths)): |
|
|
|
|
|
|
|
|
actual_end = mel_lengths[b] |
|
|
if actual_end < mel_input_tokens.shape[-1]: |
|
|
mel_input_tokens[b, actual_end:] = self.stop_mel_token |
|
|
return mel_input_tokens |
|
|
|
|
|
def set_text_padding(self, text_input_tokens, text_lengths): |
|
|
""" |
|
|
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in |
|
|
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required |
|
|
preformatting to create a working TTS model. |
|
|
""" |
|
|
for b in range(len(text_lengths)): |
|
|
|
|
|
|
|
|
actual_end = text_lengths[b] |
|
|
if actual_end < text_input_tokens.shape[-1]: |
|
|
text_input_tokens[b, actual_end:] = self.stop_text_token |
|
|
return text_input_tokens |
|
|
|
|
|
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False): |
|
|
if second_inputs is not None: |
|
|
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) |
|
|
else: |
|
|
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) |
|
|
|
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) |
|
|
if get_attns: |
|
|
return gpt_out.attentions |
|
|
|
|
|
offset = speech_conditioning_inputs.shape[1] |
|
|
enc = gpt_out.last_hidden_state[:, offset:] |
|
|
enc = self.final_norm(enc) |
|
|
|
|
|
if return_latent: |
|
|
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:] |
|
|
|
|
|
first_logits = enc[:, :first_inputs.shape[1]] |
|
|
first_logits = first_head(first_logits) |
|
|
first_logits = first_logits.permute(0, 2, 1) |
|
|
if second_inputs is not None: |
|
|
second_logits = enc[:, -second_inputs.shape[1]:] |
|
|
second_logits = second_head(second_logits) |
|
|
second_logits = second_logits.permute(0, 2, 1) |
|
|
return first_logits, second_logits |
|
|
else: |
|
|
return first_logits |
|
|
|
|
|
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None): |
|
|
if self.condition_type == "perceiver": |
|
|
if speech_conditioning_input.ndim == 4: |
|
|
speech_conditioning_input = speech_conditioning_input.squeeze(1) |
|
|
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) |
|
|
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) |
|
|
elif self.condition_type == "conformer_perceiver": |
|
|
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2), |
|
|
cond_mel_lengths) |
|
|
if self.condition_type == "conformer_perceiver": |
|
|
|
|
|
conds_mask = self.cond_mask_pad(mask.squeeze(1)) |
|
|
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) |
|
|
elif self.condition_type == "gst": |
|
|
if speech_conditioning_input.ndim == 4: |
|
|
speech_conditioning_input = speech_conditioning_input.squeeze(1) |
|
|
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) |
|
|
else: |
|
|
speech_conditioning_input = ( |
|
|
speech_conditioning_input.unsqueeze(1) |
|
|
if len(speech_conditioning_input.shape) == 3 |
|
|
else speech_conditioning_input |
|
|
) |
|
|
conds = [] |
|
|
for j in range(speech_conditioning_input.shape[1]): |
|
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
|
conds = torch.stack(conds, dim=1) |
|
|
conds = conds.mean(dim=1) |
|
|
conds = conds.unsqueeze(1) |
|
|
return conds |
|
|
|
|
|
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths, |
|
|
cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False, |
|
|
return_latent=False, clip_inputs=False): |
|
|
""" |
|
|
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode |
|
|
(actuated by `text_first`). |
|
|
|
|
|
speech_conditioning_input: MEL float tensor, (b,1024) |
|
|
text_inputs: long tensor, (b,t) |
|
|
text_lengths: long tensor, (b,) |
|
|
mel_inputs: long tensor, (b,m) |
|
|
wav_lengths: long tensor, (b,) |
|
|
raw_mels: MEL float tensor (b,80,s) |
|
|
|
|
|
If return_attentions is specified, only logits are returned. |
|
|
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. |
|
|
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. |
|
|
""" |
|
|
|
|
|
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths) |
|
|
|
|
|
if types is not None: |
|
|
text_inputs = text_inputs * (1 + types).unsqueeze(-1) |
|
|
|
|
|
if clip_inputs: |
|
|
|
|
|
|
|
|
max_text_len = text_lengths.max() |
|
|
text_inputs = text_inputs[:, :max_text_len] |
|
|
max_mel_len = wav_lengths.max() // self.mel_length_compression |
|
|
mel_codes = mel_codes[:, :max_mel_len] |
|
|
if raw_mels is not None: |
|
|
raw_mels = raw_mels[:, :, :max_mel_len * 4] |
|
|
|
|
|
|
|
|
|
|
|
mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1 |
|
|
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths) |
|
|
text_inputs = self.set_text_padding(text_inputs, text_lengths) |
|
|
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) |
|
|
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token) |
|
|
|
|
|
conds = speech_conditioning_latent |
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) |
|
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) |
|
|
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token) |
|
|
if raw_mels is not None: |
|
|
mel_inp = F.pad(raw_mels, (0, 8)) |
|
|
else: |
|
|
mel_inp = mel_codes |
|
|
mel_emb = self.mel_embedding(mel_inp) |
|
|
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) |
|
|
|
|
|
if text_first: |
|
|
|
|
|
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent) |
|
|
if return_latent: |
|
|
return mel_logits[:, :-2] |
|
|
else: |
|
|
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent) |
|
|
if return_latent: |
|
|
return text_logits[:, :-2] |
|
|
|
|
|
if return_attentions: |
|
|
return mel_logits |
|
|
|
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long()) |
|
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) |
|
|
return loss_text.mean(), loss_mel.mean(), mel_logits |
|
|
|
|
|
def prepare_gpt_inputs( |
|
|
self, |
|
|
conditional_latents: torch.Tensor, |
|
|
text_inputs: torch.Tensor, |
|
|
): |
|
|
|
|
|
""" |
|
|
Prepare the inputs for the GPT2InferenceModel to generate. |
|
|
Args: |
|
|
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()` |
|
|
text_inputs: (b, L) |
|
|
Returns: |
|
|
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate() |
|
|
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward() |
|
|
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate() |
|
|
""" |
|
|
b, L = text_inputs.shape[:2] |
|
|
device = text_inputs.device |
|
|
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1 |
|
|
if not single_cond: |
|
|
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}" |
|
|
batched_mel_emb = [] |
|
|
attention_masks = [] |
|
|
target_len = conditional_latents.shape[1] + L + 2 |
|
|
for i in range(b): |
|
|
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token) |
|
|
text_input = text_inputs[i][valid_mask] |
|
|
text_input = F.pad(text_input, (1, 0), value=self.start_text_token) |
|
|
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token) |
|
|
text_input_pos = torch.arange(0, text_input.size(-1), device=device) |
|
|
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos) |
|
|
|
|
|
conds_text_emb = [ |
|
|
conditional_latents.squeeze(0) if single_cond else conditional_latents[i], |
|
|
text_emb, |
|
|
] |
|
|
|
|
|
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device) |
|
|
|
|
|
padding: int = L + 2 - text_input.size(-1) |
|
|
|
|
|
if padding > 0: |
|
|
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) |
|
|
conds_text_emb.insert(0, pad) |
|
|
attention_mask[:padding] = 0 |
|
|
mel_emb = torch.cat(conds_text_emb) |
|
|
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}" |
|
|
batched_mel_emb.append(mel_emb) |
|
|
attention_masks.append(attention_mask) |
|
|
|
|
|
batched_mel_emb = torch.stack(batched_mel_emb, dim=0) |
|
|
|
|
|
attention_mask = torch.stack(attention_masks, dim=0) |
|
|
|
|
|
fake_inputs = torch.ones( |
|
|
( |
|
|
batched_mel_emb.shape[0], |
|
|
batched_mel_emb.shape[1] + 1, |
|
|
), |
|
|
dtype=torch.long, |
|
|
device=device, |
|
|
) |
|
|
fake_inputs[:, -1] = self.start_mel_token |
|
|
return fake_inputs, batched_mel_emb, attention_mask |
|
|
def inference_speech(self, speech_conditioning_mel, text_inputs, cond_mel_lengths=None, input_tokens=None, num_return_sequences=1, |
|
|
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs): |
|
|
""" |
|
|
Args: |
|
|
speech_conditioning_mel: (b, n_mels, frames) or (n_mels, frames) |
|
|
text_inputs: (b, L) |
|
|
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,) |
|
|
input_tokens: additional tokens for generation in shape (b, s) or (s,) |
|
|
max_generate_length: limit the number of generated tokens |
|
|
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)` |
|
|
""" |
|
|
if speech_conditioning_mel.ndim == 2: |
|
|
speech_conditioning_mel = speech_conditioning_mel.unsqueeze(0) |
|
|
if cond_mel_lengths is None: |
|
|
cond_mel_lengths = torch.tensor([speech_conditioning_mel.shape[-1]], device=speech_conditioning_mel.device) |
|
|
conds_latent = self.get_conditioning(speech_conditioning_mel, cond_mel_lengths) |
|
|
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs) |
|
|
self.inference_model.store_mel_emb(inputs_embeds) |
|
|
if input_tokens is None: |
|
|
inputs = input_ids |
|
|
else: |
|
|
if input_tokens.ndim == 1: |
|
|
input_tokens = input_tokens.unsqueeze(0) |
|
|
assert num_return_sequences % input_tokens.shape[0] == 0, \ |
|
|
"The num_return_sequences must be divisible by the batch number of input_tokens" |
|
|
assert num_return_sequences % text_inputs.shape[0] == 0, \ |
|
|
"The num_return_sequences must be divisible by the batch number of text_inputs" |
|
|
b = num_return_sequences // input_ids.shape[0] |
|
|
if b > 1: |
|
|
input_ids = input_ids.repeat(b, 1) |
|
|
attention_mask = attention_mask.repeat(b, 1) |
|
|
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1) |
|
|
inputs = torch.cat([input_ids, input_tokens], dim=1) |
|
|
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1) |
|
|
trunc_index = inputs.shape[1] |
|
|
logits_processor = LogitsProcessorList() |
|
|
if typical_sampling: |
|
|
|
|
|
if not (typical_mass > 0.0 and typical_mass < 1.0): |
|
|
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}") |
|
|
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1 |
|
|
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep)) |
|
|
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length |
|
|
output = self.inference_model.generate(inputs, |
|
|
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, |
|
|
eos_token_id=self.stop_mel_token, attention_mask=attention_mask, |
|
|
max_length=max_length, logits_processor=logits_processor, |
|
|
num_return_sequences=num_return_sequences, |
|
|
**hf_generate_kwargs) |
|
|
if isinstance(output, torch.Tensor): |
|
|
return output[:, trunc_index:] |
|
|
|
|
|
output.sequences = output.sequences[:, trunc_index:] |
|
|
return output |
|
|
|