Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,8 @@ import json
|
|
| 4 |
import logging
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
-
from diffusers import DiffusionPipeline
|
|
|
|
| 8 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
| 9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 10 |
import copy
|
|
@@ -21,35 +22,48 @@ from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_
|
|
| 21 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
| 22 |
from tagger.fl2flux import predict_tags_fl2_flux
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Initialize the base model
|
| 25 |
base_model = models[0]
|
| 26 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
| 27 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
controlnet_union = None
|
| 30 |
controlnet = None
|
| 31 |
last_model = models[0]
|
| 32 |
last_cn_on = False
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
| 35 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
|
|
|
| 36 |
def change_base_model(repo_id: str, cn_on: bool):
|
| 37 |
global pipe
|
| 38 |
global controlnet_union
|
| 39 |
global controlnet
|
| 40 |
global last_model
|
| 41 |
global last_cn_on
|
| 42 |
-
dtype = torch.bfloat16
|
| 43 |
-
#dtype = torch.float8_e4m3fn
|
| 44 |
try:
|
| 45 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
| 46 |
if cn_on:
|
| 47 |
#progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
| 48 |
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
| 49 |
clear_cache()
|
| 50 |
-
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
| 51 |
-
controlnet = FluxMultiControlNetModel([controlnet_union])
|
| 52 |
-
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
|
|
|
| 53 |
last_model = repo_id
|
| 54 |
last_cn_on = cn_on
|
| 55 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
@@ -58,7 +72,8 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
| 58 |
#progress(0, desc=f"Loading model: {repo_id}")
|
| 59 |
print(f"Loading model: {repo_id}")
|
| 60 |
clear_cache()
|
| 61 |
-
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
|
|
|
| 62 |
last_model = repo_id
|
| 63 |
last_cn_on = cn_on
|
| 64 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
|
@@ -70,12 +85,6 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
| 70 |
|
| 71 |
change_base_model.zerogpu = True
|
| 72 |
|
| 73 |
-
# Load LoRAs from JSON file
|
| 74 |
-
with open('loras.json', 'r') as f:
|
| 75 |
-
loras = json.load(f)
|
| 76 |
-
|
| 77 |
-
MAX_SEED = 2**32-1
|
| 78 |
-
|
| 79 |
class calculateDuration:
|
| 80 |
def __init__(self, activity_name=""):
|
| 81 |
self.activity_name = activity_name
|
|
@@ -118,9 +127,13 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
| 118 |
@spaces.GPU(duration=70)
|
| 119 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
| 120 |
global pipe
|
|
|
|
|
|
|
| 121 |
global controlnet
|
| 122 |
global controlnet_union
|
| 123 |
try:
|
|
|
|
|
|
|
| 124 |
pipe.to("cuda")
|
| 125 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 126 |
|
|
@@ -129,7 +142,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
| 129 |
modes, images, scales = get_control_params()
|
| 130 |
if not cn_on or len(modes) == 0:
|
| 131 |
progress(0, desc="Start Inference.")
|
| 132 |
-
|
| 133 |
prompt=prompt_mash,
|
| 134 |
num_inference_steps=steps,
|
| 135 |
guidance_scale=cfg_scale,
|
|
@@ -137,12 +150,15 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
| 137 |
height=height,
|
| 138 |
generator=generator,
|
| 139 |
joint_attention_kwargs={"scale": lora_scale},
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
| 141 |
else:
|
| 142 |
progress(0, desc="Start Inference with ControlNet.")
|
| 143 |
if controlnet is not None: controlnet.to("cuda")
|
| 144 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
| 145 |
-
|
| 146 |
prompt=prompt_mash,
|
| 147 |
control_image=images,
|
| 148 |
control_mode=modes,
|
|
@@ -153,23 +169,35 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
| 153 |
controlnet_conditioning_scale=scales,
|
| 154 |
generator=generator,
|
| 155 |
joint_attention_kwargs={"scale": lora_scale},
|
| 156 |
-
).images
|
|
|
|
| 157 |
except Exception as e:
|
| 158 |
print(e)
|
| 159 |
raise gr.Error(f"Inference Error: {e}")
|
| 160 |
-
return image
|
| 161 |
|
| 162 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 163 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
| 164 |
global pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
if selected_index is None and not is_valid_lora(lora_json):
|
| 166 |
gr.Info("LoRA isn't selected.")
|
| 167 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
| 168 |
progress(0, desc="Preparing Inference.")
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
prompt_mash = prompt
|
| 171 |
if is_valid_lora(lora_json):
|
| 172 |
-
|
|
|
|
| 173 |
fuse_loras(pipe, lora_json)
|
| 174 |
trigger_word = get_trigger_word(lora_json)
|
| 175 |
prompt_mash = f"{prompt} {trigger_word}"
|
|
@@ -200,17 +228,28 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
| 200 |
seed = random.randint(0, MAX_SEED)
|
| 201 |
|
| 202 |
progress(0, desc="Running Inference.")
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
def get_huggingface_safetensors(link):
|
| 216 |
split_link = link.split("/")
|
|
@@ -343,6 +382,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
| 343 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 344 |
deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
|
| 345 |
with gr.Column():
|
|
|
|
| 346 |
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
|
| 347 |
with gr.Group():
|
| 348 |
model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
|
|
@@ -450,7 +490,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
| 450 |
fn=run_lora,
|
| 451 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 452 |
lora_scale, lora_repo_json, cn_on],
|
| 453 |
-
outputs=[result, seed],
|
| 454 |
queue=True,
|
| 455 |
show_api=True,
|
| 456 |
)
|
|
|
|
| 4 |
import logging
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
| 8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 9 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
| 10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 11 |
import copy
|
|
|
|
| 22 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
| 23 |
from tagger.fl2flux import predict_tags_fl2_flux
|
| 24 |
|
| 25 |
+
# Load LoRAs from JSON file
|
| 26 |
+
with open('loras.json', 'r') as f:
|
| 27 |
+
loras = json.load(f)
|
| 28 |
+
|
| 29 |
+
dtype = torch.bfloat16
|
| 30 |
+
#dtype = torch.float8_e4m3fn
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
# Initialize the base model
|
| 33 |
base_model = models[0]
|
| 34 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
| 35 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
| 36 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 37 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 38 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
| 39 |
controlnet_union = None
|
| 40 |
controlnet = None
|
| 41 |
last_model = models[0]
|
| 42 |
last_cn_on = False
|
| 43 |
|
| 44 |
+
MAX_SEED = 2**32-1
|
| 45 |
+
|
| 46 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 47 |
+
|
| 48 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
| 49 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
| 50 |
+
@spaces.GPU()
|
| 51 |
def change_base_model(repo_id: str, cn_on: bool):
|
| 52 |
global pipe
|
| 53 |
global controlnet_union
|
| 54 |
global controlnet
|
| 55 |
global last_model
|
| 56 |
global last_cn_on
|
|
|
|
|
|
|
| 57 |
try:
|
| 58 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
| 59 |
if cn_on:
|
| 60 |
#progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
| 61 |
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
|
| 62 |
clear_cache()
|
| 63 |
+
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype).to(device)
|
| 64 |
+
controlnet = FluxMultiControlNetModel([controlnet_union]).to(device)
|
| 65 |
+
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype).to(device)
|
| 66 |
+
#pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 67 |
last_model = repo_id
|
| 68 |
last_cn_on = cn_on
|
| 69 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
|
|
| 72 |
#progress(0, desc=f"Loading model: {repo_id}")
|
| 73 |
print(f"Loading model: {repo_id}")
|
| 74 |
clear_cache()
|
| 75 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype, vae=taef1).to(device)
|
| 76 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 77 |
last_model = repo_id
|
| 78 |
last_cn_on = cn_on
|
| 79 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
|
|
|
| 85 |
|
| 86 |
change_base_model.zerogpu = True
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
class calculateDuration:
|
| 89 |
def __init__(self, activity_name=""):
|
| 90 |
self.activity_name = activity_name
|
|
|
|
| 127 |
@spaces.GPU(duration=70)
|
| 128 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
| 129 |
global pipe
|
| 130 |
+
global taef1
|
| 131 |
+
global good_vae
|
| 132 |
global controlnet
|
| 133 |
global controlnet_union
|
| 134 |
try:
|
| 135 |
+
good_vae.to("cuda")
|
| 136 |
+
taef1.to("cuda")
|
| 137 |
pipe.to("cuda")
|
| 138 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 139 |
|
|
|
|
| 142 |
modes, images, scales = get_control_params()
|
| 143 |
if not cn_on or len(modes) == 0:
|
| 144 |
progress(0, desc="Start Inference.")
|
| 145 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 146 |
prompt=prompt_mash,
|
| 147 |
num_inference_steps=steps,
|
| 148 |
guidance_scale=cfg_scale,
|
|
|
|
| 150 |
height=height,
|
| 151 |
generator=generator,
|
| 152 |
joint_attention_kwargs={"scale": lora_scale},
|
| 153 |
+
output_type="pil",
|
| 154 |
+
good_vae=good_vae,
|
| 155 |
+
):
|
| 156 |
+
yield img
|
| 157 |
else:
|
| 158 |
progress(0, desc="Start Inference with ControlNet.")
|
| 159 |
if controlnet is not None: controlnet.to("cuda")
|
| 160 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
| 161 |
+
for img in pipe(
|
| 162 |
prompt=prompt_mash,
|
| 163 |
control_image=images,
|
| 164 |
control_mode=modes,
|
|
|
|
| 169 |
controlnet_conditioning_scale=scales,
|
| 170 |
generator=generator,
|
| 171 |
joint_attention_kwargs={"scale": lora_scale},
|
| 172 |
+
).images:
|
| 173 |
+
yield img
|
| 174 |
except Exception as e:
|
| 175 |
print(e)
|
| 176 |
raise gr.Error(f"Inference Error: {e}")
|
|
|
|
| 177 |
|
| 178 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 179 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
| 180 |
global pipe
|
| 181 |
+
global taef1
|
| 182 |
+
global good_vae
|
| 183 |
+
global controlnet
|
| 184 |
+
global controlnet_union
|
| 185 |
if selected_index is None and not is_valid_lora(lora_json):
|
| 186 |
gr.Info("LoRA isn't selected.")
|
| 187 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
| 188 |
progress(0, desc="Preparing Inference.")
|
| 189 |
|
| 190 |
+
with calculateDuration("Unloading LoRA"):
|
| 191 |
+
try:
|
| 192 |
+
pipe.unfuse_lora()
|
| 193 |
+
pipe.unload_lora_weights()
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(e)
|
| 196 |
+
|
| 197 |
prompt_mash = prompt
|
| 198 |
if is_valid_lora(lora_json):
|
| 199 |
+
# Load External LoRA weights
|
| 200 |
+
with calculateDuration("Loading External LoRA weights"):
|
| 201 |
fuse_loras(pipe, lora_json)
|
| 202 |
trigger_word = get_trigger_word(lora_json)
|
| 203 |
prompt_mash = f"{prompt} {trigger_word}"
|
|
|
|
| 228 |
seed = random.randint(0, MAX_SEED)
|
| 229 |
|
| 230 |
progress(0, desc="Running Inference.")
|
| 231 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
| 232 |
+
# Consume the generator to get the final image
|
| 233 |
+
final_image = None
|
| 234 |
+
step_counter = 0
|
| 235 |
+
for image in image_generator:
|
| 236 |
+
step_counter+=1
|
| 237 |
+
final_image = image
|
| 238 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 239 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 240 |
+
|
| 241 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 242 |
+
#if is_valid_lora(lora_json):
|
| 243 |
+
# pipe.unfuse_lora()
|
| 244 |
+
# pipe.unload_lora_weights()
|
| 245 |
+
#if selected_index is not None: pipe.unload_lora_weights()
|
| 246 |
+
#pipe.to("cpu")
|
| 247 |
+
#good_vae.to("cpu")
|
| 248 |
+
#taef1.to("cpu")
|
| 249 |
+
#if controlnet is not None: controlnet.to("cpu")
|
| 250 |
+
#if controlnet_union is not None: controlnet_union.to("cpu")
|
| 251 |
+
#clear_cache()
|
| 252 |
+
#return final_image, seed # Return the final image and seed
|
| 253 |
|
| 254 |
def get_huggingface_safetensors(link):
|
| 255 |
split_link = link.split("/")
|
|
|
|
| 382 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 383 |
deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
|
| 384 |
with gr.Column():
|
| 385 |
+
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
| 386 |
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
|
| 387 |
with gr.Group():
|
| 388 |
model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
|
|
|
|
| 490 |
fn=run_lora,
|
| 491 |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
| 492 |
lora_scale, lora_repo_json, cn_on],
|
| 493 |
+
outputs=[result, seed, progress_bar],
|
| 494 |
queue=True,
|
| 495 |
show_api=True,
|
| 496 |
)
|