|
|
import PIL |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
class MIDITokenizer: |
|
|
def __init__(self): |
|
|
self.vocab_size = 0 |
|
|
|
|
|
def allocate_ids(size): |
|
|
ids = [self.vocab_size + i for i in range(size)] |
|
|
self.vocab_size += size |
|
|
return ids |
|
|
|
|
|
self.pad_id = allocate_ids(1)[0] |
|
|
self.bos_id = allocate_ids(1)[0] |
|
|
self.eos_id = allocate_ids(1)[0] |
|
|
self.events = { |
|
|
"note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"], |
|
|
"patch_change": ["time1", "time2", "track", "channel", "patch"], |
|
|
"control_change": ["time1", "time2", "track", "channel", "controller", "value"], |
|
|
"set_tempo": ["time1", "time2", "track", "bpm"], |
|
|
} |
|
|
self.event_parameters = { |
|
|
"time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128, |
|
|
"patch": 128, "controller": 128, "value": 128, "bpm": 256 |
|
|
} |
|
|
self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()} |
|
|
self.id_events = {i: e for e, i in self.event_ids.items()} |
|
|
self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()} |
|
|
self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1 |
|
|
|
|
|
def tempo2bpm(self, tempo): |
|
|
tempo = tempo / 10 ** 6 |
|
|
bpm = 60 / tempo |
|
|
return bpm |
|
|
|
|
|
def bpm2tempo(self, bpm): |
|
|
if bpm == 0: |
|
|
bpm = 1 |
|
|
tempo = int((60 / bpm) * 10 ** 6) |
|
|
return tempo |
|
|
|
|
|
def tokenize(self, midi_score, add_bos_eos=True): |
|
|
ticks_per_beat = midi_score[0] |
|
|
event_list = {} |
|
|
track_num = len(midi_score[1:]) |
|
|
for track_idx, track in enumerate(midi_score[1:129]): |
|
|
for event in track: |
|
|
t = round(16 * event[1] / ticks_per_beat) |
|
|
new_event = [event[0], t // 16, t % 16, track_idx] + event[2:] |
|
|
if event[0] == "note": |
|
|
new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat)) |
|
|
elif event[0] == "set_tempo": |
|
|
new_event[4] = int(self.tempo2bpm(new_event[4])) |
|
|
key = hash(tuple(new_event[:-1])) |
|
|
event_list[key] = new_event |
|
|
event_list = list(event_list.values()) |
|
|
event_list = sorted(event_list, key=lambda e: (e[1] * 16 + e[2]) * track_num + e[3]) |
|
|
midi_seq = [] |
|
|
|
|
|
last_t1 = 0 |
|
|
for event in event_list: |
|
|
name = event[0] |
|
|
if name in self.event_ids: |
|
|
params = event[1:] |
|
|
cur_t1 = params[0] |
|
|
params[0] = params[0] - last_t1 |
|
|
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): |
|
|
continue |
|
|
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] |
|
|
for i, p in enumerate(self.events[name])] |
|
|
tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) |
|
|
midi_seq.append(tokens) |
|
|
last_t1 = cur_t1 |
|
|
|
|
|
if add_bos_eos: |
|
|
bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1) |
|
|
eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1) |
|
|
midi_seq = [bos] + midi_seq + [eos] |
|
|
return midi_seq |
|
|
|
|
|
def event2tokens(self, event): |
|
|
name = event[0] |
|
|
params = event[1:] |
|
|
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] |
|
|
for i, p in enumerate(self.events[name])] |
|
|
tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) |
|
|
return tokens |
|
|
|
|
|
def detokenize(self, midi_seq): |
|
|
ticks_per_beat = 480 |
|
|
tracks_dict = {} |
|
|
t1 = 0 |
|
|
for tokens in midi_seq: |
|
|
if tokens[0] in self.id_events: |
|
|
name = self.id_events[tokens[0]] |
|
|
if len(tokens) <= len(self.events[name]): |
|
|
continue |
|
|
params = tokens[1:] |
|
|
params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])] |
|
|
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): |
|
|
continue |
|
|
event = [name] + params |
|
|
if name == "set_tempo": |
|
|
event[4] = self.bpm2tempo(event[4]) |
|
|
if event[0] == "note": |
|
|
event[4] = int(event[4] * ticks_per_beat / 16) |
|
|
t1 += event[1] |
|
|
t = t1 * 16 + event[2] |
|
|
t = int(t * ticks_per_beat / 16) |
|
|
track_idx = event[3] |
|
|
if track_idx not in tracks_dict: |
|
|
tracks_dict[track_idx] = [] |
|
|
tracks_dict[track_idx].append([event[0], t] + event[4:]) |
|
|
tracks = list(tracks_dict.values()) |
|
|
for i in range(len(tracks)): |
|
|
track = tracks[i] |
|
|
track = sorted(track, key=lambda e: e[1]) |
|
|
last_note_t = {} |
|
|
for e in reversed(track): |
|
|
if e[0] == "note": |
|
|
t, d, c, p = e[1:5] |
|
|
key = (c, p) |
|
|
if key in last_note_t: |
|
|
d = min(d, max(last_note_t[key] - t, 0)) |
|
|
last_note_t[key] = t |
|
|
e[2] = d |
|
|
tracks[i] = track |
|
|
return [ticks_per_beat, *tracks] |
|
|
|
|
|
def midi2img(self, midi_score): |
|
|
ticks_per_beat = midi_score[0] |
|
|
notes = [] |
|
|
max_time = 1 |
|
|
track_num = len(midi_score[1:]) |
|
|
for track_idx, track in enumerate(midi_score[1:]): |
|
|
for event in track: |
|
|
t = round(16 * event[1] / ticks_per_beat) |
|
|
if event[0] == "note": |
|
|
d = max(1, round(16 * event[2] / ticks_per_beat)) |
|
|
c, p = event[3:5] |
|
|
max_time = max(max_time, t + d + 1) |
|
|
notes.append((track_idx, c, p, t, d)) |
|
|
img = np.zeros((128, max_time, 3), dtype=np.uint8) |
|
|
colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)} |
|
|
for note in notes: |
|
|
tr, c, p, t, d = note |
|
|
img[p, t: t + d] = colors[(tr, c)] |
|
|
img = PIL.Image.fromarray(np.flip(img, 0)) |
|
|
return img |
|
|
|