Spaces:
Running
Running
Upload 4 files
Browse files
convert_url_to_diffusers_sdxl_gr.py
CHANGED
|
@@ -3,7 +3,13 @@ from pathlib import Path
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
|
|
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
| 8 |
|
| 9 |
|
|
@@ -12,15 +18,12 @@ def list_sub(a, b):
|
|
| 12 |
|
| 13 |
|
| 14 |
def is_repo_name(s):
|
| 15 |
-
import re
|
| 16 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
| 17 |
|
| 18 |
|
| 19 |
def split_hf_url(url: str):
|
| 20 |
-
import re
|
| 21 |
-
import urllib.parse
|
| 22 |
try:
|
| 23 |
-
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(
|
| 24 |
if len(s) < 4: return "", "", "", ""
|
| 25 |
repo_id = s[1]
|
| 26 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
@@ -32,7 +35,6 @@ def split_hf_url(url: str):
|
|
| 32 |
|
| 33 |
|
| 34 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
| 35 |
-
from huggingface_hub import hf_hub_download
|
| 36 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 37 |
try:
|
| 38 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
@@ -244,8 +246,8 @@ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key="", hf_token=""):
|
|
| 244 |
return pipe
|
| 245 |
|
| 246 |
|
| 247 |
-
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False,
|
| 248 |
-
scheduler="Euler a", lora_dict={}, is_local=True, progress=gr.Progress(track_tqdm=True)):
|
| 249 |
progress(0, desc="Start converting...")
|
| 250 |
temp_dir = "."
|
| 251 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
@@ -254,72 +256,66 @@ def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf
|
|
| 254 |
return ""
|
| 255 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
else:
|
| 264 |
-
if half:
|
| 265 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
| 266 |
-
else:
|
| 267 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
|
| 268 |
|
| 269 |
new_vae_file = ""
|
| 270 |
if vae:
|
| 271 |
-
if is_repo_name(vae):
|
| 272 |
-
if half:
|
| 273 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
| 274 |
-
else:
|
| 275 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
| 276 |
else:
|
| 277 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
| 278 |
-
if new_vae_file
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
| 284 |
|
| 285 |
sconf = get_scheduler_config(scheduler)
|
| 286 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
| 287 |
|
| 288 |
-
|
| 289 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 290 |
-
else:
|
| 291 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 292 |
|
| 293 |
-
if Path(new_repo_name).exists():
|
| 294 |
-
save_readme_md(new_repo_name, url)
|
| 295 |
|
| 296 |
-
if not
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
| 300 |
|
| 301 |
progress(1, desc="Converted.")
|
| 302 |
return new_repo_name
|
| 303 |
|
| 304 |
|
| 305 |
def is_repo_exists(repo_id, hf_token):
|
| 306 |
-
from huggingface_hub import HfApi
|
| 307 |
api = HfApi(token=hf_token)
|
| 308 |
try:
|
| 309 |
if api.repo_exists(repo_id=repo_id): return True
|
| 310 |
else: return False
|
| 311 |
except Exception as e:
|
| 312 |
-
print(e)
|
| 313 |
-
print(f"Error: Failed to connect {repo_id}.")
|
| 314 |
return True # for safe
|
| 315 |
|
| 316 |
|
| 317 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
| 318 |
-
from huggingface_hub import HfApi
|
| 319 |
api = HfApi(token=hf_token)
|
| 320 |
try:
|
| 321 |
progress(0, desc="Start uploading...")
|
| 322 |
-
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private)
|
| 323 |
for path in Path(diffusers_folder).glob("*"):
|
| 324 |
if path.is_dir():
|
| 325 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
@@ -328,39 +324,40 @@ def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, p
|
|
| 328 |
progress(1, desc="Uploaded.")
|
| 329 |
url = f"https://huggingface.co/{new_repo_id}"
|
| 330 |
except Exception as e:
|
| 331 |
-
print(f"Error: Failed to upload to {new_repo_id}.")
|
| 332 |
-
print(e)
|
| 333 |
return ""
|
| 334 |
return url
|
| 335 |
|
| 336 |
|
| 337 |
-
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True,
|
| 338 |
-
|
|
|
|
| 339 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
| 340 |
-
|
|
|
|
|
|
|
| 341 |
if not hf_user:
|
| 342 |
print(f"Invalid user name: {hf_user}")
|
| 343 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
| 344 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 345 |
-
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
|
| 346 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
| 347 |
-
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf,
|
| 348 |
if not new_path: return ""
|
| 349 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
| 350 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
| 351 |
if not is_repo_name(new_repo_id):
|
| 352 |
print(f"Invalid repo name: {new_repo_id}")
|
| 353 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
| 354 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 355 |
-
if is_repo_exists(new_repo_id, hf_token):
|
| 356 |
print(f"Repo already exists: {new_repo_id}")
|
| 357 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
| 358 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 359 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
| 360 |
shutil.rmtree(new_path)
|
| 361 |
if not repo_urls: repo_urls = []
|
| 362 |
repo_urls.append(repo_url)
|
| 363 |
-
md = "Your new repo
|
| 364 |
for u in repo_urls:
|
| 365 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
| 366 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
|
@@ -370,7 +367,7 @@ if __name__ == "__main__":
|
|
| 370 |
parser = argparse.ArgumentParser()
|
| 371 |
|
| 372 |
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
| 373 |
-
parser.add_argument("--
|
| 374 |
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
| 375 |
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
| 376 |
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
|
@@ -395,4 +392,4 @@ if __name__ == "__main__":
|
|
| 395 |
for p in Path(args.loras).glob('**/*.safetensors'):
|
| 396 |
lora_dict[str(p)] = 1.0
|
| 397 |
|
| 398 |
-
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 7 |
import gradio as gr
|
| 8 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 9 |
+
import urllib.parse
|
| 10 |
+
import re
|
| 11 |
+
import shutil
|
| 12 |
+
import gc
|
| 13 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
| 14 |
|
| 15 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def is_repo_name(s):
|
|
|
|
| 21 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
| 22 |
|
| 23 |
|
| 24 |
def split_hf_url(url: str):
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
+
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
| 27 |
if len(s) < 4: return "", "", "", ""
|
| 28 |
repo_id = s[1]
|
| 29 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 38 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 39 |
try:
|
| 40 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
|
|
| 246 |
return pipe
|
| 247 |
|
| 248 |
|
| 249 |
+
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, dtype="fp16", vae="",
|
| 250 |
+
scheduler="Euler a", lora_dict={}, is_local=True, clip="", progress=gr.Progress(track_tqdm=True)):
|
| 251 |
progress(0, desc="Start converting...")
|
| 252 |
temp_dir = "."
|
| 253 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
|
|
| 256 |
return ""
|
| 257 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 258 |
|
| 259 |
+
type_kwargs = {}
|
| 260 |
+
kwargs = {}
|
| 261 |
+
if dtype == "fp16": type_kwargs["torch_dtype"] = torch.float16
|
| 262 |
+
elif dtype == "fp32": type_kwargs["torch_dtype"] = torch.float32
|
| 263 |
+
elif dtype == "bf16": type_kwargs["torch_dtype"] = torch.bfloat16
|
| 264 |
+
elif dtype == "fp8": type_kwargs["torch_dtype"] = torch.float8_e4m3fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
new_vae_file = ""
|
| 267 |
if vae:
|
| 268 |
+
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
else:
|
| 270 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
| 271 |
+
if new_vae_file: my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs)
|
| 272 |
+
kwargs["vae"] = my_vae
|
| 273 |
+
|
| 274 |
+
if clip:
|
| 275 |
+
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
| 276 |
+
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
| 277 |
+
kwargs["tokenizer"] = my_tokenizer
|
| 278 |
+
kwargs["text_encoder"] = my_text_encoder
|
| 279 |
+
|
| 280 |
+
pipe = None
|
| 281 |
+
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
| 282 |
+
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
| 283 |
|
| 284 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
| 285 |
|
| 286 |
sconf = get_scheduler_config(scheduler)
|
| 287 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
| 288 |
|
| 289 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
if Path(new_repo_name).exists(): save_readme_md(new_repo_name, url)
|
|
|
|
| 292 |
|
| 293 |
+
if not is_local:
|
| 294 |
+
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))
|
| 295 |
+
else: os.remove(new_file)
|
| 296 |
+
del pipe
|
| 297 |
+
torch.cuda.empty_cache()
|
| 298 |
+
gc.collect()
|
| 299 |
|
| 300 |
progress(1, desc="Converted.")
|
| 301 |
return new_repo_name
|
| 302 |
|
| 303 |
|
| 304 |
def is_repo_exists(repo_id, hf_token):
|
|
|
|
| 305 |
api = HfApi(token=hf_token)
|
| 306 |
try:
|
| 307 |
if api.repo_exists(repo_id=repo_id): return True
|
| 308 |
else: return False
|
| 309 |
except Exception as e:
|
| 310 |
+
print(f"Error: Failed to connect {repo_id}. {e}")
|
|
|
|
| 311 |
return True # for safe
|
| 312 |
|
| 313 |
|
| 314 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 315 |
api = HfApi(token=hf_token)
|
| 316 |
try:
|
| 317 |
progress(0, desc="Start uploading...")
|
| 318 |
+
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=True)
|
| 319 |
for path in Path(diffusers_folder).glob("*"):
|
| 320 |
if path.is_dir():
|
| 321 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
|
|
| 324 |
progress(1, desc="Uploaded.")
|
| 325 |
url = f"https://huggingface.co/{new_repo_id}"
|
| 326 |
except Exception as e:
|
| 327 |
+
print(f"Error: Failed to upload to {new_repo_id}. {e}")
|
|
|
|
| 328 |
return ""
|
| 329 |
return url
|
| 330 |
|
| 331 |
|
| 332 |
+
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
| 333 |
+
repo_urls=[], dtype="fp16", vae=None, clip="", scheduler="Euler a",
|
| 334 |
+
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
| 335 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
| 336 |
+
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
|
| 337 |
+
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
|
| 338 |
+
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
|
| 339 |
if not hf_user:
|
| 340 |
print(f"Invalid user name: {hf_user}")
|
| 341 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
| 342 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
|
|
| 343 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
| 344 |
+
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, dtype, vae, scheduler, lora_dict, False, clip)
|
| 345 |
if not new_path: return ""
|
| 346 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
| 347 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
| 348 |
if not is_repo_name(new_repo_id):
|
| 349 |
print(f"Invalid repo name: {new_repo_id}")
|
| 350 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
| 351 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
| 352 |
+
if not is_overwrite and is_repo_exists(new_repo_id, hf_token):
|
| 353 |
print(f"Repo already exists: {new_repo_id}")
|
| 354 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
| 355 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
| 356 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
| 357 |
shutil.rmtree(new_path)
|
| 358 |
if not repo_urls: repo_urls = []
|
| 359 |
repo_urls.append(repo_url)
|
| 360 |
+
md = "### Your new repo:\n"
|
| 361 |
for u in repo_urls:
|
| 362 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
| 363 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
|
|
|
| 367 |
parser = argparse.ArgumentParser()
|
| 368 |
|
| 369 |
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
| 370 |
+
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "fp8", "default"], help='Output data type. (Default: "fp16")')
|
| 371 |
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
| 372 |
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
| 373 |
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
|
|
|
| 392 |
for p in Path(args.loras).glob('**/*.safetensors'):
|
| 393 |
lora_dict[str(p)] = 1.0
|
| 394 |
|
| 395 |
+
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.dtype, args.vae, args.scheduler, lora_dict, True)
|