Spaces:
Running
Running
Upload convert_url_to_diffusers_multi_gr.py
Browse files
convert_url_to_diffusers_multi_gr.py
CHANGED
|
@@ -293,7 +293,7 @@ def load_and_save_pipeline(pipe, model_type: str, url: str, new_file: str, new_d
|
|
| 293 |
pipe.save_pretrained(new_dir)
|
| 294 |
except Exception as e:
|
| 295 |
print(f"Failed to load pipeline. {e}")
|
| 296 |
-
raise Exception("Failed to load pipeline.") from e
|
| 297 |
finally:
|
| 298 |
return pipe
|
| 299 |
|
|
@@ -305,20 +305,22 @@ def convert_url_to_diffusers(url: str, civitai_key: str="", is_upload_sf: bool=F
|
|
| 305 |
hf_token = get_token()
|
| 306 |
progress(0, desc="Start converting...")
|
| 307 |
temp_dir = TEMP_DIR
|
|
|
|
| 308 |
|
| 309 |
if is_repo_name(url) and is_repo_exists(url):
|
| 310 |
new_file = url
|
| 311 |
model_type = mtype
|
| 312 |
else:
|
| 313 |
new_file = get_download_file(temp_dir, url, civitai_key)
|
| 314 |
-
if not new_file or Path(new_file).suffix not in set([".safetensors", ".ckpt", ".bin", ".sft"]):
|
|
|
|
|
|
|
| 315 |
model_type = get_model_type_from_key(new_file)
|
| 316 |
new_dir = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 317 |
|
| 318 |
kwargs = {}
|
| 319 |
dkwargs = {}
|
| 320 |
if dtype != DTYPE_DEFAULT: dkwargs["torch_dtype"] = get_process_dtype(dtype, model_type)
|
| 321 |
-
pipe = None
|
| 322 |
|
| 323 |
print(f"Model type: {model_type} / VAE: {vae} / CLIP: {clip} / T5: {t5} / Scheduler: {scheduler} / dtype: {dtype} / EMA: {ema} / Base repo: {base_repo} / LoRAs: {lora_dict}")
|
| 324 |
|
|
@@ -387,7 +389,7 @@ def convert_url_to_diffusers(url: str, civitai_key: str="", is_upload_sf: bool=F
|
|
| 387 |
return new_dir
|
| 388 |
except Exception as e:
|
| 389 |
print(f"Failed to convert. {e}")
|
| 390 |
-
raise Exception("Failed to convert.") from e
|
| 391 |
finally:
|
| 392 |
del pipe
|
| 393 |
torch.cuda.empty_cache()
|
|
|
|
| 293 |
pipe.save_pretrained(new_dir)
|
| 294 |
except Exception as e:
|
| 295 |
print(f"Failed to load pipeline. {e}")
|
| 296 |
+
raise Exception(f"Failed to load pipeline. {e}") from e
|
| 297 |
finally:
|
| 298 |
return pipe
|
| 299 |
|
|
|
|
| 305 |
hf_token = get_token()
|
| 306 |
progress(0, desc="Start converting...")
|
| 307 |
temp_dir = TEMP_DIR
|
| 308 |
+
pipe = None
|
| 309 |
|
| 310 |
if is_repo_name(url) and is_repo_exists(url):
|
| 311 |
new_file = url
|
| 312 |
model_type = mtype
|
| 313 |
else:
|
| 314 |
new_file = get_download_file(temp_dir, url, civitai_key)
|
| 315 |
+
if not new_file or Path(new_file).suffix.lower() not in set([".safetensors", ".ckpt", ".bin", ".sft"]):
|
| 316 |
+
safe_clean(new_file)
|
| 317 |
+
raise Exception(f"Safetensors file not found: {url}")
|
| 318 |
model_type = get_model_type_from_key(new_file)
|
| 319 |
new_dir = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 320 |
|
| 321 |
kwargs = {}
|
| 322 |
dkwargs = {}
|
| 323 |
if dtype != DTYPE_DEFAULT: dkwargs["torch_dtype"] = get_process_dtype(dtype, model_type)
|
|
|
|
| 324 |
|
| 325 |
print(f"Model type: {model_type} / VAE: {vae} / CLIP: {clip} / T5: {t5} / Scheduler: {scheduler} / dtype: {dtype} / EMA: {ema} / Base repo: {base_repo} / LoRAs: {lora_dict}")
|
| 326 |
|
|
|
|
| 389 |
return new_dir
|
| 390 |
except Exception as e:
|
| 391 |
print(f"Failed to convert. {e}")
|
| 392 |
+
raise Exception(f"Failed to convert. {e}") from e
|
| 393 |
finally:
|
| 394 |
del pipe
|
| 395 |
torch.cuda.empty_cache()
|