Spaces:
Running
Running
Delete convert_url_to_diffusers_sdxl.py
Browse files- convert_url_to_diffusers_sdxl.py +0 -300
convert_url_to_diffusers_sdxl.py
DELETED
|
@@ -1,300 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
from pathlib import Path
|
| 3 |
-
import os
|
| 4 |
-
import torch
|
| 5 |
-
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 6 |
-
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def list_sub(a, b):
|
| 10 |
-
return [e for e in a if e not in b]
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def is_repo_name(s):
|
| 14 |
-
import re
|
| 15 |
-
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def download_thing(directory, url, civitai_api_key=""):
|
| 19 |
-
url = url.strip()
|
| 20 |
-
if "drive.google.com" in url:
|
| 21 |
-
original_dir = os.getcwd()
|
| 22 |
-
os.chdir(directory)
|
| 23 |
-
os.system(f"gdown --fuzzy {url}")
|
| 24 |
-
os.chdir(original_dir)
|
| 25 |
-
elif "huggingface.co" in url:
|
| 26 |
-
url = url.replace("?download=true", "")
|
| 27 |
-
if "/blob/" in url:
|
| 28 |
-
url = url.replace("/blob/", "/resolve/")
|
| 29 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 30 |
-
else:
|
| 31 |
-
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 32 |
-
elif "civitai.com" in url:
|
| 33 |
-
if "?" in url:
|
| 34 |
-
url = url.split("?")[0]
|
| 35 |
-
if civitai_api_key:
|
| 36 |
-
url = url + f"?token={civitai_api_key}"
|
| 37 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 38 |
-
else:
|
| 39 |
-
print("You need an API key to download Civitai models.")
|
| 40 |
-
else:
|
| 41 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def get_local_model_list(dir_path):
|
| 45 |
-
model_list = []
|
| 46 |
-
valid_extensions = ('.safetensors')
|
| 47 |
-
for file in Path(dir_path).glob("*"):
|
| 48 |
-
if file.suffix in valid_extensions:
|
| 49 |
-
file_path = str(Path(f"{dir_path}/{file.name}"))
|
| 50 |
-
model_list.append(file_path)
|
| 51 |
-
return model_list
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def get_download_file(temp_dir, url, civitai_key):
|
| 55 |
-
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
| 56 |
-
print(f"Use HF Repo: {url}")
|
| 57 |
-
new_file = url
|
| 58 |
-
elif not "http" in url and Path(url).exists():
|
| 59 |
-
print(f"Use local file: {url}")
|
| 60 |
-
new_file = url
|
| 61 |
-
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
| 62 |
-
print(f"File to download alreday exists: {url}")
|
| 63 |
-
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
| 64 |
-
else:
|
| 65 |
-
print(f"Start downloading: {url}")
|
| 66 |
-
before = get_local_model_list(temp_dir)
|
| 67 |
-
try:
|
| 68 |
-
download_thing(temp_dir, url.strip(), civitai_key)
|
| 69 |
-
except Exception:
|
| 70 |
-
print(f"Download failed: {url}")
|
| 71 |
-
return ""
|
| 72 |
-
after = get_local_model_list(temp_dir)
|
| 73 |
-
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
| 74 |
-
if not new_file:
|
| 75 |
-
print(f"Download failed: {url}")
|
| 76 |
-
return ""
|
| 77 |
-
print(f"Download completed: {url}")
|
| 78 |
-
return new_file
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
from diffusers import (
|
| 82 |
-
DPMSolverMultistepScheduler,
|
| 83 |
-
DPMSolverSinglestepScheduler,
|
| 84 |
-
KDPM2DiscreteScheduler,
|
| 85 |
-
EulerDiscreteScheduler,
|
| 86 |
-
EulerAncestralDiscreteScheduler,
|
| 87 |
-
HeunDiscreteScheduler,
|
| 88 |
-
LMSDiscreteScheduler,
|
| 89 |
-
DDIMScheduler,
|
| 90 |
-
DEISMultistepScheduler,
|
| 91 |
-
UniPCMultistepScheduler,
|
| 92 |
-
LCMScheduler,
|
| 93 |
-
PNDMScheduler,
|
| 94 |
-
KDPM2AncestralDiscreteScheduler,
|
| 95 |
-
DPMSolverSDEScheduler,
|
| 96 |
-
EDMDPMSolverMultistepScheduler,
|
| 97 |
-
DDPMScheduler,
|
| 98 |
-
EDMEulerScheduler,
|
| 99 |
-
TCDScheduler,
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
SCHEDULER_CONFIG_MAP = {
|
| 104 |
-
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
|
| 105 |
-
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
| 106 |
-
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
|
| 107 |
-
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
|
| 108 |
-
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
|
| 109 |
-
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
| 110 |
-
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
|
| 111 |
-
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
|
| 112 |
-
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
|
| 113 |
-
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
|
| 114 |
-
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
|
| 115 |
-
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
|
| 116 |
-
"DPM2": (KDPM2DiscreteScheduler, {}),
|
| 117 |
-
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
| 118 |
-
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
|
| 119 |
-
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
| 120 |
-
"Euler": (EulerDiscreteScheduler, {}),
|
| 121 |
-
"Euler a": (EulerAncestralDiscreteScheduler, {}),
|
| 122 |
-
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
|
| 123 |
-
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
|
| 124 |
-
"Heun": (HeunDiscreteScheduler, {}),
|
| 125 |
-
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
|
| 126 |
-
"LMS": (LMSDiscreteScheduler, {}),
|
| 127 |
-
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
| 128 |
-
"DDIM": (DDIMScheduler, {}),
|
| 129 |
-
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
|
| 130 |
-
"DEIS": (DEISMultistepScheduler, {}),
|
| 131 |
-
"UniPC": (UniPCMultistepScheduler, {}),
|
| 132 |
-
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
|
| 133 |
-
"PNDM": (PNDMScheduler, {}),
|
| 134 |
-
"Euler EDM": (EDMEulerScheduler, {}),
|
| 135 |
-
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
|
| 136 |
-
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
| 137 |
-
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
| 138 |
-
"DDPM": (DDPMScheduler, {}),
|
| 139 |
-
|
| 140 |
-
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
|
| 141 |
-
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
|
| 142 |
-
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
|
| 143 |
-
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
|
| 144 |
-
|
| 145 |
-
"LCM": (LCMScheduler, {}),
|
| 146 |
-
"TCD": (TCDScheduler, {}),
|
| 147 |
-
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
|
| 148 |
-
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
|
| 149 |
-
"LCM Auto-Loader": (LCMScheduler, {}),
|
| 150 |
-
"TCD Auto-Loader": (TCDScheduler, {}),
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def get_scheduler_config(name):
|
| 155 |
-
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
|
| 156 |
-
return SCHEDULER_CONFIG_MAP[name]
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def save_readme_md(dir, url):
|
| 160 |
-
orig_url = ""
|
| 161 |
-
orig_name = ""
|
| 162 |
-
if is_repo_name(url):
|
| 163 |
-
orig_name = url
|
| 164 |
-
orig_url = f"https://huggingface.co/{url}/"
|
| 165 |
-
elif "http" in url:
|
| 166 |
-
orig_name = url
|
| 167 |
-
orig_url = url
|
| 168 |
-
if orig_name and orig_url:
|
| 169 |
-
md = f"""---
|
| 170 |
-
license: other
|
| 171 |
-
language:
|
| 172 |
-
- en
|
| 173 |
-
library_name: diffusers
|
| 174 |
-
pipeline_tag: text-to-image
|
| 175 |
-
tags:
|
| 176 |
-
- text-to-image
|
| 177 |
-
---
|
| 178 |
-
Converted from [{orig_name}]({orig_url}).
|
| 179 |
-
"""
|
| 180 |
-
else:
|
| 181 |
-
md = f"""---
|
| 182 |
-
license: other
|
| 183 |
-
language:
|
| 184 |
-
- en
|
| 185 |
-
library_name: diffusers
|
| 186 |
-
pipeline_tag: text-to-image
|
| 187 |
-
tags:
|
| 188 |
-
- text-to-image
|
| 189 |
-
---
|
| 190 |
-
"""
|
| 191 |
-
path = str(Path(dir, "README.md"))
|
| 192 |
-
with open(path, mode='w', encoding="utf-8") as f:
|
| 193 |
-
f.write(md)
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
|
| 197 |
-
if not lora_dict or not isinstance(lora_dict, dict): return pipe
|
| 198 |
-
a_list = []
|
| 199 |
-
w_list = []
|
| 200 |
-
for k, v in lora_dict.items():
|
| 201 |
-
if not k: continue
|
| 202 |
-
new_lora_file = get_download_file(temp_dir, k, civitai_key)
|
| 203 |
-
if not new_lora_file or not Path(new_lora_file).exists():
|
| 204 |
-
print(f"LoRA not found: {k}")
|
| 205 |
-
continue
|
| 206 |
-
w_name = Path(new_lora_file).name
|
| 207 |
-
a_name = Path(new_lora_file).stem
|
| 208 |
-
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
|
| 209 |
-
a_list.append(a_name)
|
| 210 |
-
w_list.append(v)
|
| 211 |
-
if not a_list: return pipe
|
| 212 |
-
pipe.set_adapters(a_list, adapter_weights=w_list)
|
| 213 |
-
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
| 214 |
-
pipe.unload_lora_weights()
|
| 215 |
-
return pipe
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def convert_url_to_diffusers_sdxl(url, civitai_key="", half=True, vae=None, scheduler="Euler a", lora_dict={}):
|
| 219 |
-
temp_dir = "."
|
| 220 |
-
new_file = get_download_file(temp_dir, url, civitai_key)
|
| 221 |
-
if not new_file:
|
| 222 |
-
print(f"Not found: {url}")
|
| 223 |
-
return
|
| 224 |
-
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 225 |
-
|
| 226 |
-
pipe = None
|
| 227 |
-
if is_repo_name(url):
|
| 228 |
-
if half:
|
| 229 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
| 230 |
-
else:
|
| 231 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
|
| 232 |
-
else:
|
| 233 |
-
if half:
|
| 234 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
| 235 |
-
else:
|
| 236 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
|
| 237 |
-
|
| 238 |
-
new_vae_file = ""
|
| 239 |
-
if vae:
|
| 240 |
-
if is_repo_name(vae):
|
| 241 |
-
if half:
|
| 242 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
| 243 |
-
else:
|
| 244 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
| 245 |
-
else:
|
| 246 |
-
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
|
| 247 |
-
if new_vae_file and half:
|
| 248 |
-
pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
|
| 249 |
-
elif new_vae_file:
|
| 250 |
-
pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
|
| 251 |
-
|
| 252 |
-
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
|
| 253 |
-
|
| 254 |
-
sconf = get_scheduler_config(scheduler)
|
| 255 |
-
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
| 256 |
-
|
| 257 |
-
if half:
|
| 258 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 259 |
-
else:
|
| 260 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 261 |
-
|
| 262 |
-
if Path(new_repo_name).exists():
|
| 263 |
-
save_readme_md(new_repo_name, url)
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
if __name__ == "__main__":
|
| 267 |
-
parser = argparse.ArgumentParser()
|
| 268 |
-
|
| 269 |
-
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
| 270 |
-
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
| 271 |
-
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
| 272 |
-
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
| 273 |
-
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
| 274 |
-
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
| 275 |
-
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
|
| 276 |
-
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
| 277 |
-
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
|
| 278 |
-
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
| 279 |
-
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
|
| 280 |
-
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
| 281 |
-
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
|
| 282 |
-
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
| 283 |
-
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
|
| 284 |
-
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
|
| 285 |
-
|
| 286 |
-
args = parser.parse_args()
|
| 287 |
-
assert args.url is not None, "Must provide a URL!"
|
| 288 |
-
|
| 289 |
-
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
| 290 |
-
|
| 291 |
-
if args.loras and Path(args.loras).exists():
|
| 292 |
-
for p in Path(args.loras).glob('**/*.safetensors'):
|
| 293 |
-
lora_dict[str(p)] = 1.0
|
| 294 |
-
|
| 295 |
-
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict)
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
# Usage: python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors
|
| 299 |
-
# python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --scheduler "Euler a"
|
| 300 |
-
# python convert_url_to_diffusers_sdxl.py --url https://huggingface.co/bluepen5805/anima_pencil-XL/blob/main/anima_pencil-XL-v5.0.0.safetensors --loras ./loras
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|