Commit
·
db1702e
1
Parent(s):
33f9b9a
Adding components
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from NeuralTextGenerator import BertTextGenerator
|
|
| 14 |
|
| 15 |
# generator = pipeline("sentiment-analysis")
|
| 16 |
|
| 17 |
-
print('dfg')
|
| 18 |
model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased"
|
| 19 |
en_model = BertTextGenerator(model_name)
|
| 20 |
tokenizer = en_model.tokenizer
|
|
@@ -24,8 +24,41 @@ device = model.device
|
|
| 24 |
en_model.tokenizer.add_special_tokens({'additional_special_tokens': ['[POSITIVE-0]', '[POSITIVE-1]', '[POSITIVE-2]','[NEGATIVE-0]', '[NEGATIVE-1]', '[NEGATIVE-2]']})
|
| 25 |
en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
| 26 |
|
| 27 |
-
def classify(sentiment):
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
'batch_size': 2,
|
| 30 |
'avg_len':30,
|
| 31 |
'max_len':50,
|
|
@@ -33,9 +66,9 @@ def classify(sentiment):
|
|
| 33 |
'generation_method':'parallel',
|
| 34 |
'sample': True,
|
| 35 |
'burnin': 450,
|
| 36 |
-
'max_iter':
|
| 37 |
'top_k': 100,
|
| 38 |
-
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2]
|
| 39 |
# 'verbose': True
|
| 40 |
}
|
| 41 |
sents = en_model.generate(**parameters)
|
|
@@ -45,14 +78,18 @@ def classify(sentiment):
|
|
| 45 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
| 46 |
|
| 47 |
return gen_text
|
|
|
|
| 48 |
|
| 49 |
-
demo = gr.Blocks()
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
demo.launch()
|
|
|
|
| 14 |
|
| 15 |
# generator = pipeline("sentiment-analysis")
|
| 16 |
|
| 17 |
+
# print('dfg')
|
| 18 |
model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased"
|
| 19 |
en_model = BertTextGenerator(model_name)
|
| 20 |
tokenizer = en_model.tokenizer
|
|
|
|
| 24 |
en_model.tokenizer.add_special_tokens({'additional_special_tokens': ['[POSITIVE-0]', '[POSITIVE-1]', '[POSITIVE-2]','[NEGATIVE-0]', '[NEGATIVE-1]', '[NEGATIVE-2]']})
|
| 25 |
en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
| 26 |
|
| 27 |
+
# def classify(sentiment):
|
| 28 |
+
# parameters = {'n_sentences': 1,
|
| 29 |
+
# 'batch_size': 2,
|
| 30 |
+
# 'avg_len':30,
|
| 31 |
+
# 'max_len':50,
|
| 32 |
+
# # 'std_len' : 3,
|
| 33 |
+
# 'generation_method':'parallel',
|
| 34 |
+
# 'sample': True,
|
| 35 |
+
# 'burnin': 450,
|
| 36 |
+
# 'max_iter': 100,
|
| 37 |
+
# 'top_k': 100,
|
| 38 |
+
# 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] Ronaldo",
|
| 39 |
+
# # 'verbose': True
|
| 40 |
+
# }
|
| 41 |
+
# sents = en_model.generate(**parameters)
|
| 42 |
+
# gen_text = ''
|
| 43 |
+
|
| 44 |
+
# for i, s in enumerate(sents):
|
| 45 |
+
# gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
| 46 |
+
|
| 47 |
+
# return gen_text
|
| 48 |
+
|
| 49 |
+
# demo = gr.Blocks()
|
| 50 |
+
|
| 51 |
+
# with demo:
|
| 52 |
+
# gr.Markdown()
|
| 53 |
+
# inputs = gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") # gr.Dropdown(["POSITIVE", "NEGATIVE"], label="Sentiment to generate")
|
| 54 |
+
# output = gr.Textbox(label="Generated tweet")
|
| 55 |
+
# b1 = gr.Button("Generate")
|
| 56 |
+
# b1.click(classify, inputs=inputs, outputs=output)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def sentence_builder(n_sentences, max_iter, sentiment, seed_text):
|
| 61 |
+
parameters = {'n_sentences': n_sentences,
|
| 62 |
'batch_size': 2,
|
| 63 |
'avg_len':30,
|
| 64 |
'max_len':50,
|
|
|
|
| 66 |
'generation_method':'parallel',
|
| 67 |
'sample': True,
|
| 68 |
'burnin': 450,
|
| 69 |
+
'max_iter': max_iter,
|
| 70 |
'top_k': 100,
|
| 71 |
+
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
| 72 |
# 'verbose': True
|
| 73 |
}
|
| 74 |
sents = en_model.generate(**parameters)
|
|
|
|
| 78 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
| 79 |
|
| 80 |
return gen_text
|
| 81 |
+
# return f"""The {quantity} {animal}s from {" and ".join(countries)} went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
+
demo = gr.Interface(
|
| 85 |
+
sentence_builder,
|
| 86 |
+
[
|
| 87 |
+
gr.Slider(1, 15, value=2, label="Num. Tweets", info="Number of tweets to be generated."),
|
| 88 |
+
gr.Slider(50, 500, value=100, label="Max. iter", info="Maximum number of iterations for the generation."),
|
| 89 |
+
gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate"),
|
| 90 |
+
gr.Textbox('', label="Seed text", info="Seed text for the generation.")
|
| 91 |
+
],
|
| 92 |
+
"text",
|
| 93 |
+
)
|
| 94 |
|
| 95 |
demo.launch()
|