Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from parameterized import parameterized | |
| from diffusers import ( | |
| AsymmetricAutoencoderKL, | |
| AutoencoderKL, | |
| AutoencoderKLTemporalDecoder, | |
| AutoencoderOobleck, | |
| AutoencoderTiny, | |
| ConsistencyDecoderVAE, | |
| StableDiffusionPipeline, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.loading_utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_hf_numpy, | |
| require_torch_accelerator, | |
| require_torch_accelerator_with_fp16, | |
| require_torch_accelerator_with_training, | |
| require_torch_gpu, | |
| skip_mps, | |
| slow, | |
| torch_all_close, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): | |
| block_out_channels = block_out_channels or [2, 4] | |
| norm_num_groups = norm_num_groups or 2 | |
| init_dict = { | |
| "block_out_channels": block_out_channels, | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
| "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), | |
| "latent_channels": 4, | |
| "norm_num_groups": norm_num_groups, | |
| } | |
| return init_dict | |
| def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): | |
| block_out_channels = block_out_channels or [2, 4] | |
| norm_num_groups = norm_num_groups or 2 | |
| init_dict = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
| "down_block_out_channels": block_out_channels, | |
| "layers_per_down_block": 1, | |
| "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), | |
| "up_block_out_channels": block_out_channels, | |
| "layers_per_up_block": 1, | |
| "act_fn": "silu", | |
| "latent_channels": 4, | |
| "norm_num_groups": norm_num_groups, | |
| "sample_size": 32, | |
| "scaling_factor": 0.18215, | |
| } | |
| return init_dict | |
| def get_autoencoder_tiny_config(block_out_channels=None): | |
| block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] | |
| init_dict = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "encoder_block_out_channels": block_out_channels, | |
| "decoder_block_out_channels": block_out_channels, | |
| "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], | |
| "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], | |
| } | |
| return init_dict | |
| def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None): | |
| block_out_channels = block_out_channels or [2, 4] | |
| norm_num_groups = norm_num_groups or 2 | |
| return { | |
| "encoder_block_out_channels": block_out_channels, | |
| "encoder_in_channels": 3, | |
| "encoder_out_channels": 4, | |
| "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
| "decoder_add_attention": False, | |
| "decoder_block_out_channels": block_out_channels, | |
| "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), | |
| "decoder_downsample_padding": 1, | |
| "decoder_in_channels": 7, | |
| "decoder_layers_per_block": 1, | |
| "decoder_norm_eps": 1e-05, | |
| "decoder_norm_num_groups": norm_num_groups, | |
| "encoder_norm_num_groups": norm_num_groups, | |
| "decoder_num_train_timesteps": 1024, | |
| "decoder_out_channels": 6, | |
| "decoder_resnet_time_scale_shift": "scale_shift", | |
| "decoder_time_embedding_type": "learned", | |
| "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), | |
| "scaling_factor": 1, | |
| "latent_channels": 4, | |
| } | |
| def get_autoencoder_oobleck_config(block_out_channels=None): | |
| init_dict = { | |
| "encoder_hidden_size": 12, | |
| "decoder_channels": 12, | |
| "decoder_input_channels": 6, | |
| "audio_channels": 2, | |
| "downsampling_ratios": [2, 4], | |
| "channel_multiples": [1, 2], | |
| } | |
| return init_dict | |
| class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKL | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = get_autoencoder_kl_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_signature(self): | |
| pass | |
| def test_training(self): | |
| pass | |
| def test_gradient_checkpointing(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| assert not model.is_gradient_checkpointing and model.training | |
| out = model(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model.zero_grad() | |
| labels = torch.randn_like(out) | |
| loss = (out - labels).mean() | |
| loss.backward() | |
| # re-instantiate the model now enabling gradient checkpointing | |
| model_2 = self.model_class(**init_dict) | |
| # clone model | |
| model_2.load_state_dict(model.state_dict()) | |
| model_2.to(torch_device) | |
| model_2.enable_gradient_checkpointing() | |
| assert model_2.is_gradient_checkpointing and model_2.training | |
| out_2 = model_2(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model_2.zero_grad() | |
| loss_2 = (out_2 - labels).mean() | |
| loss_2.backward() | |
| # compare the output and parameters gradients | |
| self.assertTrue((loss - loss_2).abs() < 1e-5) | |
| named_params = dict(model.named_parameters()) | |
| named_params_2 = dict(model_2.named_parameters()) | |
| for name, param in named_params.items(): | |
| self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) | |
| def test_from_pretrained_hub(self): | |
| model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) | |
| self.assertIsNotNone(model) | |
| self.assertEqual(len(loading_info["missing_keys"]), 0) | |
| model.to(torch_device) | |
| image = model(**self.dummy_input) | |
| assert image is not None, "Make sure output is not None" | |
| def test_output_pretrained(self): | |
| model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") | |
| model = model.to(torch_device) | |
| model.eval() | |
| # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors | |
| generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
| if torch_device != "mps": | |
| generator = torch.Generator(device=generator_device).manual_seed(0) | |
| else: | |
| generator = torch.manual_seed(0) | |
| image = torch.randn( | |
| 1, | |
| model.config.in_channels, | |
| model.config.sample_size, | |
| model.config.sample_size, | |
| generator=torch.manual_seed(0), | |
| ) | |
| image = image.to(torch_device) | |
| with torch.no_grad(): | |
| output = model(image, sample_posterior=True, generator=generator).sample | |
| output_slice = output[0, -1, -3:, -3:].flatten().cpu() | |
| # Since the VAE Gaussian prior's generator is seeded on the appropriate device, | |
| # the expected output slices are not the same for CPU and GPU. | |
| if torch_device == "mps": | |
| expected_output_slice = torch.tensor( | |
| [ | |
| -4.0078e-01, | |
| -3.8323e-04, | |
| -1.2681e-01, | |
| -1.1462e-01, | |
| 2.0095e-01, | |
| 1.0893e-01, | |
| -8.8247e-02, | |
| -3.0361e-01, | |
| -9.8644e-03, | |
| ] | |
| ) | |
| elif generator_device == "cpu": | |
| expected_output_slice = torch.tensor( | |
| [ | |
| -0.1352, | |
| 0.0878, | |
| 0.0419, | |
| -0.0818, | |
| -0.1069, | |
| 0.0688, | |
| -0.1458, | |
| -0.4446, | |
| -0.0026, | |
| ] | |
| ) | |
| else: | |
| expected_output_slice = torch.tensor( | |
| [ | |
| -0.2421, | |
| 0.4642, | |
| 0.2507, | |
| -0.0438, | |
| 0.0682, | |
| 0.3160, | |
| -0.2018, | |
| -0.0727, | |
| 0.2485, | |
| ] | |
| ) | |
| self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) | |
| class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AsymmetricAutoencoderKL | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| mask = torch.ones((batch_size, 1) + sizes).to(torch_device) | |
| return {"sample": image, "mask": mask} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = get_asym_autoencoder_kl_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_signature(self): | |
| pass | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderTiny | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = get_autoencoder_tiny_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_outputs_equivalence(self): | |
| pass | |
| class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): | |
| model_class = ConsistencyDecoderVAE | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| forward_requires_fresh_args = True | |
| def inputs_dict(self, seed=None): | |
| if seed is None: | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| else: | |
| generator = torch.Generator("cpu").manual_seed(seed) | |
| image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) | |
| return {"sample": image, "generator": generator} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def init_dict(self): | |
| return get_consistency_vae_config() | |
| def prepare_init_args_and_inputs_for_common(self): | |
| return self.init_dict, self.inputs_dict() | |
| def test_training(self): | |
| ... | |
| def test_ema_training(self): | |
| ... | |
| class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKLTemporalDecoder | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def dummy_input(self): | |
| batch_size = 3 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| num_frames = 3 | |
| return {"sample": image, "num_frames": num_frames} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": [32, 64], | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| "latent_channels": 4, | |
| "layers_per_block": 2, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_signature(self): | |
| pass | |
| def test_training(self): | |
| pass | |
| def test_gradient_checkpointing(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| assert not model.is_gradient_checkpointing and model.training | |
| out = model(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model.zero_grad() | |
| labels = torch.randn_like(out) | |
| loss = (out - labels).mean() | |
| loss.backward() | |
| # re-instantiate the model now enabling gradient checkpointing | |
| model_2 = self.model_class(**init_dict) | |
| # clone model | |
| model_2.load_state_dict(model.state_dict()) | |
| model_2.to(torch_device) | |
| model_2.enable_gradient_checkpointing() | |
| assert model_2.is_gradient_checkpointing and model_2.training | |
| out_2 = model_2(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model_2.zero_grad() | |
| loss_2 = (out_2 - labels).mean() | |
| loss_2.backward() | |
| # compare the output and parameters gradients | |
| self.assertTrue((loss - loss_2).abs() < 1e-5) | |
| named_params = dict(model.named_parameters()) | |
| named_params_2 = dict(model_2.named_parameters()) | |
| for name, param in named_params.items(): | |
| if "post_quant_conv" in name: | |
| continue | |
| self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) | |
| class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderOobleck | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 2 | |
| seq_len = 24 | |
| waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device) | |
| return {"sample": waveform, "sample_posterior": False} | |
| def input_shape(self): | |
| return (2, 24) | |
| def output_shape(self): | |
| return (2, 24) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = get_autoencoder_oobleck_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_signature(self): | |
| pass | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| def test_set_attn_processor_for_determinism(self): | |
| return | |
| class AutoencoderTinyIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_file_format(self, seed, shape): | |
| return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
| def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return image | |
| def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): | |
| torch_dtype = torch.float16 if fp16 else torch.float32 | |
| model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) | |
| model.to(torch_device).eval() | |
| return model | |
| def test_tae_tiling(self, in_shape, out_shape): | |
| model = self.get_sd_vae_model() | |
| model.enable_tiling() | |
| with torch.no_grad(): | |
| zeros = torch.zeros(in_shape).to(torch_device) | |
| dec = model.decode(zeros).sample | |
| assert dec.shape == out_shape | |
| def test_stable_diffusion(self): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed=33) | |
| with torch.no_grad(): | |
| sample = model(image).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_tae_roundtrip(self, enable_tiling): | |
| # load the autoencoder | |
| model = self.get_sd_vae_model() | |
| if enable_tiling: | |
| model.enable_tiling() | |
| # make a black image with a white square in the middle, | |
| # which is large enough to split across multiple tiles | |
| image = -torch.ones(1, 3, 1024, 1024, device=torch_device) | |
| image[..., 256:768, 256:768] = 1.0 | |
| # round-trip the image through the autoencoder | |
| with torch.no_grad(): | |
| sample = model(image).sample | |
| # the autoencoder reconstruction should match original image, sorta | |
| def downscale(x): | |
| return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) | |
| assert torch_all_close(downscale(sample), downscale(image), atol=0.125) | |
| class AutoencoderKLIntegrationTests(unittest.TestCase): | |
| def get_file_format(self, seed, shape): | |
| return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return image | |
| def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): | |
| revision = "fp16" if fp16 else None | |
| torch_dtype = torch.float16 if fp16 else torch.float32 | |
| model = AutoencoderKL.from_pretrained( | |
| model_id, | |
| subfolder="vae", | |
| torch_dtype=torch_dtype, | |
| revision=revision, | |
| ) | |
| model.to(torch_device) | |
| return model | |
| def get_generator(self, seed=0): | |
| generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
| if torch_device != "mps": | |
| return torch.Generator(device=generator_device).manual_seed(seed) | |
| return torch.manual_seed(seed) | |
| def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| sample = model(image, generator=generator, sample_posterior=True).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_stable_diffusion_fp16(self, seed, expected_slice): | |
| model = self.get_sd_vae_model(fp16=True) | |
| image = self.get_sd_image(seed, fp16=True) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| sample = model(image, generator=generator, sample_posterior=True).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) | |
| def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| with torch.no_grad(): | |
| sample = model(image).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_stable_diffusion_decode(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) | |
| def test_stable_diffusion_decode_fp16(self, seed, expected_slice): | |
| model = self.get_sd_vae_model(fp16=True) | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed): | |
| model = self.get_sd_vae_model(fp16=True) | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| with torch.no_grad(): | |
| sample_2 = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| assert torch_all_close(sample, sample_2, atol=1e-1) | |
| def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| with torch.no_grad(): | |
| sample_2 = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| assert torch_all_close(sample, sample_2, atol=1e-2) | |
| def test_stable_diffusion_encode_sample(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| dist = model.encode(image).latent_dist | |
| sample = dist.sample(generator=generator) | |
| assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] | |
| output_slice = sample[0, -1, -3:, -3:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| tolerance = 3e-3 if torch_device != "mps" else 1e-2 | |
| assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) | |
| class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase): | |
| def get_file_format(self, seed, shape): | |
| return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
| return image | |
| def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False): | |
| revision = "main" | |
| torch_dtype = torch.float32 | |
| model = AsymmetricAutoencoderKL.from_pretrained( | |
| model_id, | |
| torch_dtype=torch_dtype, | |
| revision=revision, | |
| ) | |
| model.to(torch_device).eval() | |
| return model | |
| def get_generator(self, seed=0): | |
| generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
| if torch_device != "mps": | |
| return torch.Generator(device=generator_device).manual_seed(seed) | |
| return torch.manual_seed(seed) | |
| def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| sample = model(image, generator=generator, sample_posterior=True).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
| def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| with torch.no_grad(): | |
| sample = model(image).sample | |
| assert sample.shape == image.shape | |
| output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
| expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
| def test_stable_diffusion_decode(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=2e-3) | |
| def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): | |
| model = self.get_sd_vae_model() | |
| encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
| with torch.no_grad(): | |
| sample = model.decode(encoding).sample | |
| model.enable_xformers_memory_efficient_attention() | |
| with torch.no_grad(): | |
| sample_2 = model.decode(encoding).sample | |
| assert list(sample.shape) == [3, 3, 512, 512] | |
| assert torch_all_close(sample, sample_2, atol=5e-2) | |
| def test_stable_diffusion_encode_sample(self, seed, expected_slice): | |
| model = self.get_sd_vae_model() | |
| image = self.get_sd_image(seed) | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| dist = model.encode(image).latent_dist | |
| sample = dist.sample(generator=generator) | |
| assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] | |
| output_slice = sample[0, -1, -3:, -3:].flatten().cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| tolerance = 3e-3 if torch_device != "mps" else 1e-2 | |
| assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) | |
| class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_encode_decode(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
| vae.to(torch_device) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ).resize((256, 256)) | |
| image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to( | |
| torch_device | |
| ) | |
| latent = vae.encode(image).latent_dist.mean | |
| sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
| actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_sd(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None | |
| ) | |
| pipe.to(torch_device) | |
| out = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| actual_output = out[:2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_encode_decode_f16(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained( | |
| "openai/consistency-decoder", torch_dtype=torch.float16 | |
| ) # TODO - update | |
| vae.to(torch_device) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ).resize((256, 256)) | |
| image = ( | |
| torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] | |
| .half() | |
| .to(torch_device) | |
| ) | |
| latent = vae.encode(image).latent_dist.mean | |
| sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
| actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor( | |
| [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], | |
| dtype=torch.float16, | |
| ) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_sd_f16(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained( | |
| "openai/consistency-decoder", torch_dtype=torch.float16 | |
| ) # TODO - update | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| safety_checker=None, | |
| ) | |
| pipe.to(torch_device) | |
| out = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| actual_output = out[:2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor( | |
| [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], | |
| dtype=torch.float16, | |
| ) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_vae_tiling(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 | |
| ) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| out_1 = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| # make sure tiled vae decode yields the same result | |
| pipe.enable_vae_tiling() | |
| out_2 = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| assert torch_all_close(out_1, out_2, atol=5e-3) | |
| # test that tiled decode works with various shapes | |
| shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] | |
| with torch.no_grad(): | |
| for shape in shapes: | |
| image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) | |
| pipe.vae.decode(image) | |
| class AutoencoderOobleckIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def _load_datasamples(self, num_samples): | |
| ds = load_dataset( | |
| "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True | |
| ) | |
| # automatic decoding with librispeech | |
| speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
| return torch.nn.utils.rnn.pad_sequence( | |
| [torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True | |
| ) | |
| def get_audio(self, audio_sample_size=2097152, fp16=False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| audio = self._load_datasamples(2).to(torch_device).to(dtype) | |
| # pad / crop to audio_sample_size | |
| audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1])) | |
| # todo channel | |
| audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device) | |
| return audio | |
| def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False): | |
| torch_dtype = torch.float16 if fp16 else torch.float32 | |
| model = AutoencoderOobleck.from_pretrained( | |
| model_id, | |
| subfolder="vae", | |
| torch_dtype=torch_dtype, | |
| ) | |
| model.to(torch_device) | |
| return model | |
| def get_generator(self, seed=0): | |
| generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
| if torch_device != "mps": | |
| return torch.Generator(device=generator_device).manual_seed(seed) | |
| return torch.manual_seed(seed) | |
| def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff): | |
| model = self.get_oobleck_vae_model() | |
| audio = self.get_audio() | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| sample = model(audio, generator=generator, sample_posterior=True).sample | |
| assert sample.shape == audio.shape | |
| assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 | |
| output_slice = sample[-1, 1, 5:10].cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) | |
| def test_stable_diffusion_mode(self): | |
| model = self.get_oobleck_vae_model() | |
| audio = self.get_audio() | |
| with torch.no_grad(): | |
| sample = model(audio, sample_posterior=False).sample | |
| assert sample.shape == audio.shape | |
| def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff): | |
| model = self.get_oobleck_vae_model() | |
| audio = self.get_audio() | |
| generator = self.get_generator(seed) | |
| with torch.no_grad(): | |
| x = audio | |
| posterior = model.encode(x).latent_dist | |
| z = posterior.sample(generator=generator) | |
| sample = model.decode(z).sample | |
| # (batch_size, latent_dim, sequence_length) | |
| assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024) | |
| assert sample.shape == audio.shape | |
| assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 | |
| output_slice = sample[-1, 1, 5:10].cpu() | |
| expected_output_slice = torch.tensor(expected_slice) | |
| assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) | |