Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import unittest | |
| import torch | |
| from diffusers import UNetSpatioTemporalConditionModel | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| skip_mps, | |
| torch_all_close, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| logger = logging.get_logger(__name__) | |
| enable_full_determinism() | |
| class UNetSpatioTemporalConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = UNetSpatioTemporalConditionModel | |
| main_input_name = "sample" | |
| def dummy_input(self): | |
| batch_size = 2 | |
| num_frames = 2 | |
| num_channels = 4 | |
| sizes = (32, 32) | |
| noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device) | |
| time_step = torch.tensor([10]).to(torch_device) | |
| encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device) | |
| return { | |
| "sample": noise, | |
| "timestep": time_step, | |
| "encoder_hidden_states": encoder_hidden_states, | |
| "added_time_ids": self._get_add_time_ids(), | |
| } | |
| def input_shape(self): | |
| return (2, 2, 4, 32, 32) | |
| def output_shape(self): | |
| return (4, 32, 32) | |
| def fps(self): | |
| return 6 | |
| def motion_bucket_id(self): | |
| return 127 | |
| def noise_aug_strength(self): | |
| return 0.02 | |
| def addition_time_embed_dim(self): | |
| return 32 | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = { | |
| "block_out_channels": (32, 64), | |
| "down_block_types": ( | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "DownBlockSpatioTemporal", | |
| ), | |
| "up_block_types": ( | |
| "UpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| ), | |
| "cross_attention_dim": 32, | |
| "num_attention_heads": 8, | |
| "out_channels": 4, | |
| "in_channels": 4, | |
| "layers_per_block": 2, | |
| "sample_size": 32, | |
| "projection_class_embeddings_input_dim": self.addition_time_embed_dim * 3, | |
| "addition_time_embed_dim": self.addition_time_embed_dim, | |
| } | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def _get_add_time_ids(self, do_classifier_free_guidance=True): | |
| add_time_ids = [self.fps, self.motion_bucket_id, self.noise_aug_strength] | |
| passed_add_embed_dim = self.addition_time_embed_dim * len(add_time_ids) | |
| expected_add_embed_dim = self.addition_time_embed_dim * 3 | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], device=torch_device) | |
| add_time_ids = add_time_ids.repeat(1, 1) | |
| if do_classifier_free_guidance: | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids]) | |
| return add_time_ids | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| def test_model_attention_slicing(self): | |
| pass | |
| def test_model_with_use_linear_projection(self): | |
| pass | |
| def test_model_with_simple_projection(self): | |
| pass | |
| def test_model_with_class_embeddings_concat(self): | |
| pass | |
| def test_xformers_enable_works(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.enable_xformers_memory_efficient_attention() | |
| assert ( | |
| model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
| == "XFormersAttnProcessor" | |
| ), "xformers is not enabled" | |
| def test_gradient_checkpointing(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| assert not model.is_gradient_checkpointing and model.training | |
| out = model(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model.zero_grad() | |
| labels = torch.randn_like(out) | |
| loss = (out - labels).mean() | |
| loss.backward() | |
| # re-instantiate the model now enabling gradient checkpointing | |
| model_2 = self.model_class(**init_dict) | |
| # clone model | |
| model_2.load_state_dict(model.state_dict()) | |
| model_2.to(torch_device) | |
| model_2.enable_gradient_checkpointing() | |
| assert model_2.is_gradient_checkpointing and model_2.training | |
| out_2 = model_2(**inputs_dict).sample | |
| # run the backwards pass on the model. For backwards pass, for simplicity purpose, | |
| # we won't calculate the loss and rather backprop on out.sum() | |
| model_2.zero_grad() | |
| loss_2 = (out_2 - labels).mean() | |
| loss_2.backward() | |
| # compare the output and parameters gradients | |
| self.assertTrue((loss - loss_2).abs() < 1e-5) | |
| named_params = dict(model.named_parameters()) | |
| named_params_2 = dict(model_2.named_parameters()) | |
| for name, param in named_params.items(): | |
| self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) | |
| def test_model_with_num_attention_heads_tuple(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["num_attention_heads"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_model_with_cross_attention_dim_tuple(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["cross_attention_dim"] = (32, 32) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_gradient_checkpointing_is_applied(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["num_attention_heads"] = (8, 16) | |
| model_class_copy = copy.copy(self.model_class) | |
| modules_with_gc_enabled = {} | |
| # now monkey patch the following function: | |
| # def _set_gradient_checkpointing(self, module, value=False): | |
| # if hasattr(module, "gradient_checkpointing"): | |
| # module.gradient_checkpointing = value | |
| def _set_gradient_checkpointing_new(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| modules_with_gc_enabled[module.__class__.__name__] = True | |
| model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new | |
| model = model_class_copy(**init_dict) | |
| model.enable_gradient_checkpointing() | |
| EXPECTED_SET = { | |
| "TransformerSpatioTemporalModel", | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "DownBlockSpatioTemporal", | |
| "UpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| "UNetMidBlockSpatioTemporal", | |
| } | |
| assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET | |
| assert all(modules_with_gc_enabled.values()), "All modules should be enabled" | |
| def test_pickle(self): | |
| # enable deterministic behavior for gradient checkpointing | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["num_attention_heads"] = (8, 16) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| with torch.no_grad(): | |
| sample = model(**inputs_dict).sample | |
| sample_copy = copy.copy(sample) | |
| assert (sample - sample_copy).abs().max() < 1e-4 | |