Spaces:
Runtime error
Runtime error
| import argparse | |
| import tempfile | |
| import torch | |
| from accelerate import load_checkpoint_and_dispatch | |
| from diffusers.models.transformers.prior_transformer import PriorTransformer | |
| from diffusers.pipelines.shap_e import ShapERenderer | |
| """ | |
| Example - From the diffusers root directory: | |
| Download weights: | |
| ```sh | |
| $ wget "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt" | |
| ``` | |
| Convert the model: | |
| ```sh | |
| $ python scripts/convert_shap_e_to_diffusers.py \ | |
| --prior_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/text_cond.pt \ | |
| --prior_image_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/image_cond.pt \ | |
| --transmitter_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/transmitter.pt\ | |
| --dump_path /home/yiyi_huggingface_co/model_repo/shap-e-img2img/shap_e_renderer\ | |
| --debug renderer | |
| ``` | |
| """ | |
| # prior | |
| PRIOR_ORIGINAL_PREFIX = "wrapped" | |
| PRIOR_CONFIG = { | |
| "num_attention_heads": 16, | |
| "attention_head_dim": 1024 // 16, | |
| "num_layers": 24, | |
| "embedding_dim": 1024, | |
| "num_embeddings": 1024, | |
| "additional_embeddings": 0, | |
| "time_embed_act_fn": "gelu", | |
| "norm_in_type": "layer", | |
| "encoder_hid_proj_type": None, | |
| "added_emb_type": None, | |
| "time_embed_dim": 1024 * 4, | |
| "embedding_proj_dim": 768, | |
| "clip_embed_dim": 1024 * 2, | |
| } | |
| def prior_model_from_original_config(): | |
| model = PriorTransformer(**PRIOR_CONFIG) | |
| return model | |
| def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| # <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1 | |
| diffusers_checkpoint.update( | |
| { | |
| "time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], | |
| "time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], | |
| } | |
| ) | |
| # <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2 | |
| diffusers_checkpoint.update( | |
| { | |
| "time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], | |
| "time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], | |
| } | |
| ) | |
| # <original>.input_proj -> <diffusers>.proj_in | |
| diffusers_checkpoint.update( | |
| { | |
| "proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.weight"], | |
| "proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.bias"], | |
| } | |
| ) | |
| # <original>.clip_emb -> <diffusers>.embedding_proj | |
| diffusers_checkpoint.update( | |
| { | |
| "embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.weight"], | |
| "embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.bias"], | |
| } | |
| ) | |
| # <original>.pos_emb -> <diffusers>.positional_embedding | |
| diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.pos_emb"][None, :]}) | |
| # <original>.ln_pre -> <diffusers>.norm_in | |
| diffusers_checkpoint.update( | |
| { | |
| "norm_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.weight"], | |
| "norm_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.bias"], | |
| } | |
| ) | |
| # <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x> | |
| for idx in range(len(model.transformer_blocks)): | |
| diffusers_transformer_prefix = f"transformer_blocks.{idx}" | |
| original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" | |
| # <original>.attn -> <diffusers>.attn1 | |
| diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" | |
| original_attention_prefix = f"{original_transformer_prefix}.attn" | |
| diffusers_checkpoint.update( | |
| prior_attention_to_diffusers( | |
| checkpoint, | |
| diffusers_attention_prefix=diffusers_attention_prefix, | |
| original_attention_prefix=original_attention_prefix, | |
| attention_head_dim=model.attention_head_dim, | |
| ) | |
| ) | |
| # <original>.mlp -> <diffusers>.ff | |
| diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" | |
| original_ff_prefix = f"{original_transformer_prefix}.mlp" | |
| diffusers_checkpoint.update( | |
| prior_ff_to_diffusers( | |
| checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix | |
| ) | |
| ) | |
| # <original>.ln_1 -> <diffusers>.norm1 | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ | |
| f"{original_transformer_prefix}.ln_1.weight" | |
| ], | |
| f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], | |
| } | |
| ) | |
| # <original>.ln_2 -> <diffusers>.norm3 | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ | |
| f"{original_transformer_prefix}.ln_2.weight" | |
| ], | |
| f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], | |
| } | |
| ) | |
| # <original>.ln_post -> <diffusers>.norm_out | |
| diffusers_checkpoint.update( | |
| { | |
| "norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.weight"], | |
| "norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.bias"], | |
| } | |
| ) | |
| # <original>.output_proj -> <diffusers>.proj_to_clip_embeddings | |
| diffusers_checkpoint.update( | |
| { | |
| "proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.weight"], | |
| "proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| def prior_attention_to_diffusers( | |
| checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim | |
| ): | |
| diffusers_checkpoint = {} | |
| # <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v} | |
| [q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( | |
| weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], | |
| bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], | |
| split=3, | |
| chunk_size=attention_head_dim, | |
| ) | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_attention_prefix}.to_q.weight": q_weight, | |
| f"{diffusers_attention_prefix}.to_q.bias": q_bias, | |
| f"{diffusers_attention_prefix}.to_k.weight": k_weight, | |
| f"{diffusers_attention_prefix}.to_k.bias": k_bias, | |
| f"{diffusers_attention_prefix}.to_v.weight": v_weight, | |
| f"{diffusers_attention_prefix}.to_v.bias": v_bias, | |
| } | |
| ) | |
| # <original>.c_proj -> <diffusers>.to_out.0 | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], | |
| f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): | |
| diffusers_checkpoint = { | |
| # <original>.c_fc -> <diffusers>.net.0.proj | |
| f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], | |
| f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], | |
| # <original>.c_proj -> <diffusers>.net.2 | |
| f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], | |
| f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], | |
| } | |
| return diffusers_checkpoint | |
| # done prior | |
| # prior_image (only slightly different from prior) | |
| PRIOR_IMAGE_ORIGINAL_PREFIX = "wrapped" | |
| # Uses default arguments | |
| PRIOR_IMAGE_CONFIG = { | |
| "num_attention_heads": 8, | |
| "attention_head_dim": 1024 // 8, | |
| "num_layers": 24, | |
| "embedding_dim": 1024, | |
| "num_embeddings": 1024, | |
| "additional_embeddings": 0, | |
| "time_embed_act_fn": "gelu", | |
| "norm_in_type": "layer", | |
| "embedding_proj_norm_type": "layer", | |
| "encoder_hid_proj_type": None, | |
| "added_emb_type": None, | |
| "time_embed_dim": 1024 * 4, | |
| "embedding_proj_dim": 1024, | |
| "clip_embed_dim": 1024 * 2, | |
| } | |
| def prior_image_model_from_original_config(): | |
| model = PriorTransformer(**PRIOR_IMAGE_CONFIG) | |
| return model | |
| def prior_image_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| # <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1 | |
| diffusers_checkpoint.update( | |
| { | |
| "time_embedding.linear_1.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], | |
| "time_embedding.linear_1.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], | |
| } | |
| ) | |
| # <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2 | |
| diffusers_checkpoint.update( | |
| { | |
| "time_embedding.linear_2.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], | |
| "time_embedding.linear_2.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], | |
| } | |
| ) | |
| # <original>.input_proj -> <diffusers>.proj_in | |
| diffusers_checkpoint.update( | |
| { | |
| "proj_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.weight"], | |
| "proj_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.bias"], | |
| } | |
| ) | |
| # <original>.clip_embed.0 -> <diffusers>.embedding_proj_norm | |
| diffusers_checkpoint.update( | |
| { | |
| "embedding_proj_norm.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.weight"], | |
| "embedding_proj_norm.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.bias"], | |
| } | |
| ) | |
| # <original>..clip_embed.1 -> <diffusers>.embedding_proj | |
| diffusers_checkpoint.update( | |
| { | |
| "embedding_proj.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.weight"], | |
| "embedding_proj.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.bias"], | |
| } | |
| ) | |
| # <original>.pos_emb -> <diffusers>.positional_embedding | |
| diffusers_checkpoint.update( | |
| {"positional_embedding": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.pos_emb"][None, :]} | |
| ) | |
| # <original>.ln_pre -> <diffusers>.norm_in | |
| diffusers_checkpoint.update( | |
| { | |
| "norm_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.weight"], | |
| "norm_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.bias"], | |
| } | |
| ) | |
| # <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x> | |
| for idx in range(len(model.transformer_blocks)): | |
| diffusers_transformer_prefix = f"transformer_blocks.{idx}" | |
| original_transformer_prefix = f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" | |
| # <original>.attn -> <diffusers>.attn1 | |
| diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" | |
| original_attention_prefix = f"{original_transformer_prefix}.attn" | |
| diffusers_checkpoint.update( | |
| prior_attention_to_diffusers( | |
| checkpoint, | |
| diffusers_attention_prefix=diffusers_attention_prefix, | |
| original_attention_prefix=original_attention_prefix, | |
| attention_head_dim=model.attention_head_dim, | |
| ) | |
| ) | |
| # <original>.mlp -> <diffusers>.ff | |
| diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" | |
| original_ff_prefix = f"{original_transformer_prefix}.mlp" | |
| diffusers_checkpoint.update( | |
| prior_ff_to_diffusers( | |
| checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix | |
| ) | |
| ) | |
| # <original>.ln_1 -> <diffusers>.norm1 | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ | |
| f"{original_transformer_prefix}.ln_1.weight" | |
| ], | |
| f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], | |
| } | |
| ) | |
| # <original>.ln_2 -> <diffusers>.norm3 | |
| diffusers_checkpoint.update( | |
| { | |
| f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ | |
| f"{original_transformer_prefix}.ln_2.weight" | |
| ], | |
| f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], | |
| } | |
| ) | |
| # <original>.ln_post -> <diffusers>.norm_out | |
| diffusers_checkpoint.update( | |
| { | |
| "norm_out.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.weight"], | |
| "norm_out.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.bias"], | |
| } | |
| ) | |
| # <original>.output_proj -> <diffusers>.proj_to_clip_embeddings | |
| diffusers_checkpoint.update( | |
| { | |
| "proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.weight"], | |
| "proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.bias"], | |
| } | |
| ) | |
| return diffusers_checkpoint | |
| # done prior_image | |
| # renderer | |
| ## create the lookup table for marching cubes method used in MeshDecoder | |
| MC_TABLE = [ | |
| [], | |
| [[0, 1, 0, 2, 0, 4]], | |
| [[1, 0, 1, 5, 1, 3]], | |
| [[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2]], | |
| [[2, 0, 2, 3, 2, 6]], | |
| [[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4]], | |
| [[1, 0, 1, 5, 1, 3], [2, 6, 0, 2, 3, 2]], | |
| [[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4]], | |
| [[3, 1, 3, 7, 3, 2]], | |
| [[0, 2, 0, 4, 0, 1], [3, 7, 2, 3, 1, 3]], | |
| [[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0]], | |
| [[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5]], | |
| [[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6]], | |
| [[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6]], | |
| [[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7]], | |
| [[0, 4, 1, 5, 3, 7], [0, 4, 3, 7, 2, 6]], | |
| [[4, 0, 4, 6, 4, 5]], | |
| [[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1]], | |
| [[1, 5, 1, 3, 1, 0], [4, 6, 5, 4, 0, 4]], | |
| [[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2]], | |
| [[2, 0, 2, 3, 2, 6], [4, 5, 0, 4, 6, 4]], | |
| [[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1]], | |
| [[2, 6, 2, 0, 3, 2], [1, 0, 1, 5, 3, 1], [6, 4, 5, 4, 0, 4]], | |
| [[1, 3, 5, 4, 1, 5], [1, 3, 4, 6, 5, 4], [1, 3, 3, 2, 4, 6], [3, 2, 2, 6, 4, 6]], | |
| [[3, 1, 3, 7, 3, 2], [6, 4, 5, 4, 0, 4]], | |
| [[4, 5, 0, 1, 4, 6], [0, 1, 0, 2, 4, 6], [7, 3, 2, 3, 1, 3]], | |
| [[3, 2, 1, 0, 3, 7], [1, 0, 1, 5, 3, 7], [6, 4, 5, 4, 0, 4]], | |
| [[3, 7, 3, 2, 1, 5], [3, 2, 6, 4, 1, 5], [1, 5, 6, 4, 5, 4], [3, 2, 2, 0, 6, 4]], | |
| [[3, 7, 2, 6, 3, 1], [2, 6, 2, 0, 3, 1], [5, 4, 0, 4, 6, 4]], | |
| [[1, 0, 1, 3, 5, 4], [1, 3, 2, 6, 5, 4], [1, 3, 3, 7, 2, 6], [5, 4, 2, 6, 4, 6]], | |
| [[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7], [4, 5, 0, 4, 4, 6]], | |
| [[6, 2, 4, 6, 4, 5], [4, 5, 5, 1, 6, 2], [6, 2, 5, 1, 7, 3]], | |
| [[5, 1, 5, 4, 5, 7]], | |
| [[0, 1, 0, 2, 0, 4], [5, 7, 1, 5, 4, 5]], | |
| [[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3]], | |
| [[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3]], | |
| [[2, 0, 2, 3, 2, 6], [7, 5, 1, 5, 4, 5]], | |
| [[2, 6, 0, 4, 2, 3], [0, 4, 0, 1, 2, 3], [7, 5, 1, 5, 4, 5]], | |
| [[5, 7, 1, 3, 5, 4], [1, 3, 1, 0, 5, 4], [6, 2, 0, 2, 3, 2]], | |
| [[3, 1, 3, 2, 7, 5], [3, 2, 0, 4, 7, 5], [3, 2, 2, 6, 0, 4], [7, 5, 0, 4, 5, 4]], | |
| [[3, 7, 3, 2, 3, 1], [5, 4, 7, 5, 1, 5]], | |
| [[0, 4, 0, 1, 2, 0], [3, 1, 3, 7, 2, 3], [4, 5, 7, 5, 1, 5]], | |
| [[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0]], | |
| [[0, 4, 2, 3, 0, 2], [0, 4, 3, 7, 2, 3], [0, 4, 4, 5, 3, 7], [4, 5, 5, 7, 3, 7]], | |
| [[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6], [4, 5, 7, 5, 1, 5]], | |
| [[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6], [5, 7, 1, 5, 5, 4]], | |
| [[2, 6, 2, 0, 3, 7], [2, 0, 4, 5, 3, 7], [3, 7, 4, 5, 7, 5], [2, 0, 0, 1, 4, 5]], | |
| [[4, 0, 5, 4, 5, 7], [5, 7, 7, 3, 4, 0], [4, 0, 7, 3, 6, 2]], | |
| [[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0]], | |
| [[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6]], | |
| [[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7]], | |
| [[0, 2, 4, 6, 5, 7], [0, 2, 5, 7, 1, 3]], | |
| [[5, 1, 4, 0, 5, 7], [4, 0, 4, 6, 5, 7], [3, 2, 6, 2, 0, 2]], | |
| [[2, 3, 2, 6, 0, 1], [2, 6, 7, 5, 0, 1], [0, 1, 7, 5, 1, 5], [2, 6, 6, 4, 7, 5]], | |
| [[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7], [2, 6, 0, 2, 2, 3]], | |
| [[3, 1, 2, 3, 2, 6], [2, 6, 6, 4, 3, 1], [3, 1, 6, 4, 7, 5]], | |
| [[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0], [2, 3, 1, 3, 7, 3]], | |
| [[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6], [3, 2, 1, 3, 3, 7]], | |
| [[0, 1, 0, 4, 2, 3], [0, 4, 5, 7, 2, 3], [0, 4, 4, 6, 5, 7], [2, 3, 5, 7, 3, 7]], | |
| [[7, 5, 3, 7, 3, 2], [3, 2, 2, 0, 7, 5], [7, 5, 2, 0, 6, 4]], | |
| [[0, 4, 4, 6, 5, 7], [0, 4, 5, 7, 1, 5], [0, 2, 1, 3, 3, 7], [3, 7, 2, 6, 0, 2]], | |
| [ | |
| [3, 1, 7, 3, 6, 2], | |
| [6, 2, 0, 1, 3, 1], | |
| [6, 4, 0, 1, 6, 2], | |
| [6, 4, 5, 1, 0, 1], | |
| [6, 4, 7, 5, 5, 1], | |
| ], | |
| [ | |
| [4, 0, 6, 4, 7, 5], | |
| [7, 5, 1, 0, 4, 0], | |
| [7, 3, 1, 0, 7, 5], | |
| [7, 3, 2, 0, 1, 0], | |
| [7, 3, 6, 2, 2, 0], | |
| ], | |
| [[7, 3, 6, 2, 6, 4], [7, 5, 7, 3, 6, 4]], | |
| [[6, 2, 6, 7, 6, 4]], | |
| [[0, 4, 0, 1, 0, 2], [6, 7, 4, 6, 2, 6]], | |
| [[1, 0, 1, 5, 1, 3], [7, 6, 4, 6, 2, 6]], | |
| [[1, 3, 0, 2, 1, 5], [0, 2, 0, 4, 1, 5], [7, 6, 4, 6, 2, 6]], | |
| [[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0]], | |
| [[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3]], | |
| [[6, 4, 2, 0, 6, 7], [2, 0, 2, 3, 6, 7], [5, 1, 3, 1, 0, 1]], | |
| [[1, 5, 1, 3, 0, 4], [1, 3, 7, 6, 0, 4], [0, 4, 7, 6, 4, 6], [1, 3, 3, 2, 7, 6]], | |
| [[3, 2, 3, 1, 3, 7], [6, 4, 2, 6, 7, 6]], | |
| [[3, 7, 3, 2, 1, 3], [0, 2, 0, 4, 1, 0], [7, 6, 4, 6, 2, 6]], | |
| [[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0], [4, 6, 2, 6, 7, 6]], | |
| [[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5], [6, 4, 2, 6, 6, 7]], | |
| [[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0]], | |
| [[0, 1, 4, 6, 0, 4], [0, 1, 6, 7, 4, 6], [0, 1, 1, 3, 6, 7], [1, 3, 3, 7, 6, 7]], | |
| [[0, 2, 0, 1, 4, 6], [0, 1, 3, 7, 4, 6], [0, 1, 1, 5, 3, 7], [4, 6, 3, 7, 6, 7]], | |
| [[7, 3, 6, 7, 6, 4], [6, 4, 4, 0, 7, 3], [7, 3, 4, 0, 5, 1]], | |
| [[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5]], | |
| [[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5]], | |
| [[6, 7, 4, 5, 6, 2], [4, 5, 4, 0, 6, 2], [3, 1, 0, 1, 5, 1]], | |
| [[2, 0, 2, 6, 3, 1], [2, 6, 4, 5, 3, 1], [2, 6, 6, 7, 4, 5], [3, 1, 4, 5, 1, 5]], | |
| [[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7]], | |
| [[0, 1, 2, 3, 6, 7], [0, 1, 6, 7, 4, 5]], | |
| [[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7], [1, 3, 0, 1, 1, 5]], | |
| [[5, 4, 1, 5, 1, 3], [1, 3, 3, 2, 5, 4], [5, 4, 3, 2, 7, 6]], | |
| [[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5], [1, 3, 7, 3, 2, 3]], | |
| [[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5], [3, 7, 2, 3, 3, 1]], | |
| [[0, 1, 1, 5, 3, 7], [0, 1, 3, 7, 2, 3], [0, 4, 2, 6, 6, 7], [6, 7, 4, 5, 0, 4]], | |
| [ | |
| [6, 2, 7, 6, 5, 4], | |
| [5, 4, 0, 2, 6, 2], | |
| [5, 1, 0, 2, 5, 4], | |
| [5, 1, 3, 2, 0, 2], | |
| [5, 1, 7, 3, 3, 2], | |
| ], | |
| [[3, 1, 3, 7, 2, 0], [3, 7, 5, 4, 2, 0], [2, 0, 5, 4, 0, 4], [3, 7, 7, 6, 5, 4]], | |
| [[1, 0, 3, 1, 3, 7], [3, 7, 7, 6, 1, 0], [1, 0, 7, 6, 5, 4]], | |
| [ | |
| [1, 0, 5, 1, 7, 3], | |
| [7, 3, 2, 0, 1, 0], | |
| [7, 6, 2, 0, 7, 3], | |
| [7, 6, 4, 0, 2, 0], | |
| [7, 6, 5, 4, 4, 0], | |
| ], | |
| [[7, 6, 5, 4, 5, 1], [7, 3, 7, 6, 5, 1]], | |
| [[5, 7, 5, 1, 5, 4], [6, 2, 7, 6, 4, 6]], | |
| [[0, 2, 0, 4, 1, 0], [5, 4, 5, 7, 1, 5], [2, 6, 7, 6, 4, 6]], | |
| [[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3], [2, 6, 7, 6, 4, 6]], | |
| [[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3], [6, 7, 4, 6, 6, 2]], | |
| [[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0], [1, 5, 4, 5, 7, 5]], | |
| [[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3], [5, 1, 4, 5, 5, 7]], | |
| [[0, 2, 2, 3, 6, 7], [0, 2, 6, 7, 4, 6], [0, 1, 4, 5, 5, 7], [5, 7, 1, 3, 0, 1]], | |
| [ | |
| [5, 4, 7, 5, 3, 1], | |
| [3, 1, 0, 4, 5, 4], | |
| [3, 2, 0, 4, 3, 1], | |
| [3, 2, 6, 4, 0, 4], | |
| [3, 2, 7, 6, 6, 4], | |
| ], | |
| [[5, 4, 5, 7, 1, 5], [3, 7, 3, 2, 1, 3], [4, 6, 2, 6, 7, 6]], | |
| [[1, 0, 0, 2, 0, 4], [1, 5, 5, 4, 5, 7], [3, 2, 1, 3, 3, 7], [2, 6, 7, 6, 4, 6]], | |
| [[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0], [6, 2, 7, 6, 6, 4]], | |
| [ | |
| [0, 4, 2, 3, 0, 2], | |
| [0, 4, 3, 7, 2, 3], | |
| [0, 4, 4, 5, 3, 7], | |
| [4, 5, 5, 7, 3, 7], | |
| [6, 7, 4, 6, 2, 6], | |
| ], | |
| [[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0], [5, 4, 7, 5, 5, 1]], | |
| [ | |
| [0, 1, 4, 6, 0, 4], | |
| [0, 1, 6, 7, 4, 6], | |
| [0, 1, 1, 3, 6, 7], | |
| [1, 3, 3, 7, 6, 7], | |
| [5, 7, 1, 5, 4, 5], | |
| ], | |
| [ | |
| [6, 7, 4, 6, 0, 2], | |
| [0, 2, 3, 7, 6, 7], | |
| [0, 1, 3, 7, 0, 2], | |
| [0, 1, 5, 7, 3, 7], | |
| [0, 1, 4, 5, 5, 7], | |
| ], | |
| [[4, 0, 6, 7, 4, 6], [4, 0, 7, 3, 6, 7], [4, 0, 5, 7, 7, 3], [4, 5, 5, 7, 4, 0]], | |
| [[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0]], | |
| [[0, 2, 1, 5, 0, 1], [0, 2, 5, 7, 1, 5], [0, 2, 2, 6, 5, 7], [2, 6, 6, 7, 5, 7]], | |
| [[1, 3, 1, 0, 5, 7], [1, 0, 2, 6, 5, 7], [5, 7, 2, 6, 7, 6], [1, 0, 0, 4, 2, 6]], | |
| [[2, 0, 6, 2, 6, 7], [6, 7, 7, 5, 2, 0], [2, 0, 7, 5, 3, 1]], | |
| [[0, 4, 0, 2, 1, 5], [0, 2, 6, 7, 1, 5], [0, 2, 2, 3, 6, 7], [1, 5, 6, 7, 5, 7]], | |
| [[7, 6, 5, 7, 5, 1], [5, 1, 1, 0, 7, 6], [7, 6, 1, 0, 3, 2]], | |
| [ | |
| [2, 0, 3, 2, 7, 6], | |
| [7, 6, 4, 0, 2, 0], | |
| [7, 5, 4, 0, 7, 6], | |
| [7, 5, 1, 0, 4, 0], | |
| [7, 5, 3, 1, 1, 0], | |
| ], | |
| [[7, 5, 3, 1, 3, 2], [7, 6, 7, 5, 3, 2]], | |
| [[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0], [3, 1, 7, 3, 3, 2]], | |
| [ | |
| [0, 2, 1, 5, 0, 1], | |
| [0, 2, 5, 7, 1, 5], | |
| [0, 2, 2, 6, 5, 7], | |
| [2, 6, 6, 7, 5, 7], | |
| [3, 7, 2, 3, 1, 3], | |
| ], | |
| [ | |
| [3, 7, 2, 3, 0, 1], | |
| [0, 1, 5, 7, 3, 7], | |
| [0, 4, 5, 7, 0, 1], | |
| [0, 4, 6, 7, 5, 7], | |
| [0, 4, 2, 6, 6, 7], | |
| ], | |
| [[2, 0, 3, 7, 2, 3], [2, 0, 7, 5, 3, 7], [2, 0, 6, 7, 7, 5], [2, 6, 6, 7, 2, 0]], | |
| [ | |
| [5, 7, 1, 5, 0, 4], | |
| [0, 4, 6, 7, 5, 7], | |
| [0, 2, 6, 7, 0, 4], | |
| [0, 2, 3, 7, 6, 7], | |
| [0, 2, 1, 3, 3, 7], | |
| ], | |
| [[1, 0, 5, 7, 1, 5], [1, 0, 7, 6, 5, 7], [1, 0, 3, 7, 7, 6], [1, 3, 3, 7, 1, 0]], | |
| [[0, 2, 0, 1, 0, 4], [3, 7, 6, 7, 5, 7]], | |
| [[7, 5, 7, 3, 7, 6]], | |
| [[7, 3, 7, 5, 7, 6]], | |
| [[0, 1, 0, 2, 0, 4], [6, 7, 3, 7, 5, 7]], | |
| [[1, 3, 1, 0, 1, 5], [7, 6, 3, 7, 5, 7]], | |
| [[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2], [6, 7, 3, 7, 5, 7]], | |
| [[2, 6, 2, 0, 2, 3], [7, 5, 6, 7, 3, 7]], | |
| [[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4], [5, 7, 6, 7, 3, 7]], | |
| [[1, 5, 1, 3, 0, 1], [2, 3, 2, 6, 0, 2], [5, 7, 6, 7, 3, 7]], | |
| [[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4], [7, 6, 3, 7, 7, 5]], | |
| [[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2]], | |
| [[7, 6, 3, 2, 7, 5], [3, 2, 3, 1, 7, 5], [4, 0, 1, 0, 2, 0]], | |
| [[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2]], | |
| [[2, 3, 2, 0, 6, 7], [2, 0, 1, 5, 6, 7], [2, 0, 0, 4, 1, 5], [6, 7, 1, 5, 7, 5]], | |
| [[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1]], | |
| [[0, 4, 0, 1, 2, 6], [0, 1, 5, 7, 2, 6], [2, 6, 5, 7, 6, 7], [0, 1, 1, 3, 5, 7]], | |
| [[1, 5, 0, 2, 1, 0], [1, 5, 2, 6, 0, 2], [1, 5, 5, 7, 2, 6], [5, 7, 7, 6, 2, 6]], | |
| [[5, 1, 7, 5, 7, 6], [7, 6, 6, 2, 5, 1], [5, 1, 6, 2, 4, 0]], | |
| [[4, 5, 4, 0, 4, 6], [7, 3, 5, 7, 6, 7]], | |
| [[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1], [3, 7, 5, 7, 6, 7]], | |
| [[4, 6, 4, 5, 0, 4], [1, 5, 1, 3, 0, 1], [6, 7, 3, 7, 5, 7]], | |
| [[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2], [7, 3, 5, 7, 7, 6]], | |
| [[2, 3, 2, 6, 0, 2], [4, 6, 4, 5, 0, 4], [3, 7, 5, 7, 6, 7]], | |
| [[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1], [7, 5, 6, 7, 7, 3]], | |
| [[0, 1, 1, 5, 1, 3], [0, 2, 2, 3, 2, 6], [4, 5, 0, 4, 4, 6], [5, 7, 6, 7, 3, 7]], | |
| [ | |
| [1, 3, 5, 4, 1, 5], | |
| [1, 3, 4, 6, 5, 4], | |
| [1, 3, 3, 2, 4, 6], | |
| [3, 2, 2, 6, 4, 6], | |
| [7, 6, 3, 7, 5, 7], | |
| ], | |
| [[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2], [0, 4, 6, 4, 5, 4]], | |
| [[1, 0, 0, 2, 4, 6], [1, 0, 4, 6, 5, 4], [1, 3, 5, 7, 7, 6], [7, 6, 3, 2, 1, 3]], | |
| [[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2], [4, 6, 5, 4, 4, 0]], | |
| [ | |
| [7, 5, 6, 7, 2, 3], | |
| [2, 3, 1, 5, 7, 5], | |
| [2, 0, 1, 5, 2, 3], | |
| [2, 0, 4, 5, 1, 5], | |
| [2, 0, 6, 4, 4, 5], | |
| ], | |
| [[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1], [4, 0, 6, 4, 4, 5]], | |
| [ | |
| [4, 6, 5, 4, 1, 0], | |
| [1, 0, 2, 6, 4, 6], | |
| [1, 3, 2, 6, 1, 0], | |
| [1, 3, 7, 6, 2, 6], | |
| [1, 3, 5, 7, 7, 6], | |
| ], | |
| [ | |
| [1, 5, 0, 2, 1, 0], | |
| [1, 5, 2, 6, 0, 2], | |
| [1, 5, 5, 7, 2, 6], | |
| [5, 7, 7, 6, 2, 6], | |
| [4, 6, 5, 4, 0, 4], | |
| ], | |
| [[5, 1, 4, 6, 5, 4], [5, 1, 6, 2, 4, 6], [5, 1, 7, 6, 6, 2], [5, 7, 7, 6, 5, 1]], | |
| [[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1]], | |
| [[7, 3, 5, 1, 7, 6], [5, 1, 5, 4, 7, 6], [2, 0, 4, 0, 1, 0]], | |
| [[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4]], | |
| [[0, 2, 0, 4, 1, 3], [0, 4, 6, 7, 1, 3], [1, 3, 6, 7, 3, 7], [0, 4, 4, 5, 6, 7]], | |
| [[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1], [0, 2, 3, 2, 6, 2]], | |
| [[1, 5, 5, 4, 7, 6], [1, 5, 7, 6, 3, 7], [1, 0, 3, 2, 2, 6], [2, 6, 0, 4, 1, 0]], | |
| [[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4], [2, 0, 3, 2, 2, 6]], | |
| [ | |
| [2, 3, 6, 2, 4, 0], | |
| [4, 0, 1, 3, 2, 3], | |
| [4, 5, 1, 3, 4, 0], | |
| [4, 5, 7, 3, 1, 3], | |
| [4, 5, 6, 7, 7, 3], | |
| ], | |
| [[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6]], | |
| [[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6], [0, 4, 1, 0, 0, 2]], | |
| [[1, 0, 5, 4, 7, 6], [1, 0, 7, 6, 3, 2]], | |
| [[2, 3, 0, 2, 0, 4], [0, 4, 4, 5, 2, 3], [2, 3, 4, 5, 6, 7]], | |
| [[1, 3, 1, 5, 0, 2], [1, 5, 7, 6, 0, 2], [1, 5, 5, 4, 7, 6], [0, 2, 7, 6, 2, 6]], | |
| [ | |
| [5, 1, 4, 5, 6, 7], | |
| [6, 7, 3, 1, 5, 1], | |
| [6, 2, 3, 1, 6, 7], | |
| [6, 2, 0, 1, 3, 1], | |
| [6, 2, 4, 0, 0, 1], | |
| ], | |
| [[6, 7, 2, 6, 2, 0], [2, 0, 0, 1, 6, 7], [6, 7, 0, 1, 4, 5]], | |
| [[6, 2, 4, 0, 4, 5], [6, 7, 6, 2, 4, 5]], | |
| [[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1]], | |
| [[1, 5, 1, 0, 3, 7], [1, 0, 4, 6, 3, 7], [1, 0, 0, 2, 4, 6], [3, 7, 4, 6, 7, 6]], | |
| [[1, 0, 3, 7, 1, 3], [1, 0, 7, 6, 3, 7], [1, 0, 0, 4, 7, 6], [0, 4, 4, 6, 7, 6]], | |
| [[6, 4, 7, 6, 7, 3], [7, 3, 3, 1, 6, 4], [6, 4, 3, 1, 2, 0]], | |
| [[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1], [2, 3, 6, 2, 2, 0]], | |
| [ | |
| [7, 6, 3, 7, 1, 5], | |
| [1, 5, 4, 6, 7, 6], | |
| [1, 0, 4, 6, 1, 5], | |
| [1, 0, 2, 6, 4, 6], | |
| [1, 0, 3, 2, 2, 6], | |
| ], | |
| [ | |
| [1, 0, 3, 7, 1, 3], | |
| [1, 0, 7, 6, 3, 7], | |
| [1, 0, 0, 4, 7, 6], | |
| [0, 4, 4, 6, 7, 6], | |
| [2, 6, 0, 2, 3, 2], | |
| ], | |
| [[3, 1, 7, 6, 3, 7], [3, 1, 6, 4, 7, 6], [3, 1, 2, 6, 6, 4], [3, 2, 2, 6, 3, 1]], | |
| [[3, 2, 3, 1, 7, 6], [3, 1, 0, 4, 7, 6], [7, 6, 0, 4, 6, 4], [3, 1, 1, 5, 0, 4]], | |
| [ | |
| [0, 1, 2, 0, 6, 4], | |
| [6, 4, 5, 1, 0, 1], | |
| [6, 7, 5, 1, 6, 4], | |
| [6, 7, 3, 1, 5, 1], | |
| [6, 7, 2, 3, 3, 1], | |
| ], | |
| [[0, 1, 4, 0, 4, 6], [4, 6, 6, 7, 0, 1], [0, 1, 6, 7, 2, 3]], | |
| [[6, 7, 2, 3, 2, 0], [6, 4, 6, 7, 2, 0]], | |
| [ | |
| [2, 6, 0, 2, 1, 3], | |
| [1, 3, 7, 6, 2, 6], | |
| [1, 5, 7, 6, 1, 3], | |
| [1, 5, 4, 6, 7, 6], | |
| [1, 5, 0, 4, 4, 6], | |
| ], | |
| [[1, 5, 1, 0, 1, 3], [4, 6, 7, 6, 2, 6]], | |
| [[0, 1, 2, 6, 0, 2], [0, 1, 6, 7, 2, 6], [0, 1, 4, 6, 6, 7], [0, 4, 4, 6, 0, 1]], | |
| [[6, 7, 6, 2, 6, 4]], | |
| [[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4]], | |
| [[7, 5, 6, 4, 7, 3], [6, 4, 6, 2, 7, 3], [1, 0, 2, 0, 4, 0]], | |
| [[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4], [0, 1, 5, 1, 3, 1]], | |
| [[2, 0, 0, 4, 1, 5], [2, 0, 1, 5, 3, 1], [2, 6, 3, 7, 7, 5], [7, 5, 6, 4, 2, 6]], | |
| [[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4]], | |
| [[3, 2, 3, 7, 1, 0], [3, 7, 6, 4, 1, 0], [3, 7, 7, 5, 6, 4], [1, 0, 6, 4, 0, 4]], | |
| [[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4], [1, 5, 3, 1, 1, 0]], | |
| [ | |
| [7, 3, 5, 7, 4, 6], | |
| [4, 6, 2, 3, 7, 3], | |
| [4, 0, 2, 3, 4, 6], | |
| [4, 0, 1, 3, 2, 3], | |
| [4, 0, 5, 1, 1, 3], | |
| ], | |
| [[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5]], | |
| [[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5], [0, 1, 2, 0, 0, 4]], | |
| [[1, 0, 1, 5, 3, 2], [1, 5, 4, 6, 3, 2], [3, 2, 4, 6, 2, 6], [1, 5, 5, 7, 4, 6]], | |
| [ | |
| [0, 2, 4, 0, 5, 1], | |
| [5, 1, 3, 2, 0, 2], | |
| [5, 7, 3, 2, 5, 1], | |
| [5, 7, 6, 2, 3, 2], | |
| [5, 7, 4, 6, 6, 2], | |
| ], | |
| [[2, 0, 3, 1, 7, 5], [2, 0, 7, 5, 6, 4]], | |
| [[4, 6, 0, 4, 0, 1], [0, 1, 1, 3, 4, 6], [4, 6, 1, 3, 5, 7]], | |
| [[0, 2, 1, 0, 1, 5], [1, 5, 5, 7, 0, 2], [0, 2, 5, 7, 4, 6]], | |
| [[5, 7, 4, 6, 4, 0], [5, 1, 5, 7, 4, 0]], | |
| [[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2]], | |
| [[0, 1, 0, 2, 4, 5], [0, 2, 3, 7, 4, 5], [4, 5, 3, 7, 5, 7], [0, 2, 2, 6, 3, 7]], | |
| [[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2], [1, 0, 5, 1, 1, 3]], | |
| [ | |
| [1, 5, 3, 1, 2, 0], | |
| [2, 0, 4, 5, 1, 5], | |
| [2, 6, 4, 5, 2, 0], | |
| [2, 6, 7, 5, 4, 5], | |
| [2, 6, 3, 7, 7, 5], | |
| ], | |
| [[2, 3, 0, 4, 2, 0], [2, 3, 4, 5, 0, 4], [2, 3, 3, 7, 4, 5], [3, 7, 7, 5, 4, 5]], | |
| [[3, 2, 7, 3, 7, 5], [7, 5, 5, 4, 3, 2], [3, 2, 5, 4, 1, 0]], | |
| [ | |
| [2, 3, 0, 4, 2, 0], | |
| [2, 3, 4, 5, 0, 4], | |
| [2, 3, 3, 7, 4, 5], | |
| [3, 7, 7, 5, 4, 5], | |
| [1, 5, 3, 1, 0, 1], | |
| ], | |
| [[3, 2, 1, 5, 3, 1], [3, 2, 5, 4, 1, 5], [3, 2, 7, 5, 5, 4], [3, 7, 7, 5, 3, 2]], | |
| [[2, 6, 2, 3, 0, 4], [2, 3, 7, 5, 0, 4], [2, 3, 3, 1, 7, 5], [0, 4, 7, 5, 4, 5]], | |
| [ | |
| [3, 2, 1, 3, 5, 7], | |
| [5, 7, 6, 2, 3, 2], | |
| [5, 4, 6, 2, 5, 7], | |
| [5, 4, 0, 2, 6, 2], | |
| [5, 4, 1, 0, 0, 2], | |
| ], | |
| [ | |
| [4, 5, 0, 4, 2, 6], | |
| [2, 6, 7, 5, 4, 5], | |
| [2, 3, 7, 5, 2, 6], | |
| [2, 3, 1, 5, 7, 5], | |
| [2, 3, 0, 1, 1, 5], | |
| ], | |
| [[2, 3, 2, 0, 2, 6], [1, 5, 7, 5, 4, 5]], | |
| [[5, 7, 4, 5, 4, 0], [4, 0, 0, 2, 5, 7], [5, 7, 0, 2, 1, 3]], | |
| [[5, 4, 1, 0, 1, 3], [5, 7, 5, 4, 1, 3]], | |
| [[0, 2, 4, 5, 0, 4], [0, 2, 5, 7, 4, 5], [0, 2, 1, 5, 5, 7], [0, 1, 1, 5, 0, 2]], | |
| [[5, 4, 5, 1, 5, 7]], | |
| [[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3]], | |
| [[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3], [0, 2, 4, 0, 0, 1]], | |
| [[3, 7, 3, 1, 2, 6], [3, 1, 5, 4, 2, 6], [3, 1, 1, 0, 5, 4], [2, 6, 5, 4, 6, 4]], | |
| [ | |
| [6, 4, 2, 6, 3, 7], | |
| [3, 7, 5, 4, 6, 4], | |
| [3, 1, 5, 4, 3, 7], | |
| [3, 1, 0, 4, 5, 4], | |
| [3, 1, 2, 0, 0, 4], | |
| ], | |
| [[2, 0, 2, 3, 6, 4], [2, 3, 1, 5, 6, 4], [6, 4, 1, 5, 4, 5], [2, 3, 3, 7, 1, 5]], | |
| [ | |
| [0, 4, 1, 0, 3, 2], | |
| [3, 2, 6, 4, 0, 4], | |
| [3, 7, 6, 4, 3, 2], | |
| [3, 7, 5, 4, 6, 4], | |
| [3, 7, 1, 5, 5, 4], | |
| ], | |
| [ | |
| [1, 3, 0, 1, 4, 5], | |
| [4, 5, 7, 3, 1, 3], | |
| [4, 6, 7, 3, 4, 5], | |
| [4, 6, 2, 3, 7, 3], | |
| [4, 6, 0, 2, 2, 3], | |
| ], | |
| [[3, 7, 3, 1, 3, 2], [5, 4, 6, 4, 0, 4]], | |
| [[3, 1, 2, 6, 3, 2], [3, 1, 6, 4, 2, 6], [3, 1, 1, 5, 6, 4], [1, 5, 5, 4, 6, 4]], | |
| [ | |
| [3, 1, 2, 6, 3, 2], | |
| [3, 1, 6, 4, 2, 6], | |
| [3, 1, 1, 5, 6, 4], | |
| [1, 5, 5, 4, 6, 4], | |
| [0, 4, 1, 0, 2, 0], | |
| ], | |
| [[4, 5, 6, 4, 6, 2], [6, 2, 2, 3, 4, 5], [4, 5, 2, 3, 0, 1]], | |
| [[2, 3, 6, 4, 2, 6], [2, 3, 4, 5, 6, 4], [2, 3, 0, 4, 4, 5], [2, 0, 0, 4, 2, 3]], | |
| [[1, 3, 5, 1, 5, 4], [5, 4, 4, 6, 1, 3], [1, 3, 4, 6, 0, 2]], | |
| [[1, 3, 0, 4, 1, 0], [1, 3, 4, 6, 0, 4], [1, 3, 5, 4, 4, 6], [1, 5, 5, 4, 1, 3]], | |
| [[4, 6, 0, 2, 0, 1], [4, 5, 4, 6, 0, 1]], | |
| [[4, 6, 4, 0, 4, 5]], | |
| [[4, 0, 6, 2, 7, 3], [4, 0, 7, 3, 5, 1]], | |
| [[1, 5, 0, 1, 0, 2], [0, 2, 2, 6, 1, 5], [1, 5, 2, 6, 3, 7]], | |
| [[3, 7, 1, 3, 1, 0], [1, 0, 0, 4, 3, 7], [3, 7, 0, 4, 2, 6]], | |
| [[3, 1, 2, 0, 2, 6], [3, 7, 3, 1, 2, 6]], | |
| [[0, 4, 2, 0, 2, 3], [2, 3, 3, 7, 0, 4], [0, 4, 3, 7, 1, 5]], | |
| [[3, 7, 1, 5, 1, 0], [3, 2, 3, 7, 1, 0]], | |
| [[0, 4, 1, 3, 0, 1], [0, 4, 3, 7, 1, 3], [0, 4, 2, 3, 3, 7], [0, 2, 2, 3, 0, 4]], | |
| [[3, 7, 3, 1, 3, 2]], | |
| [[2, 6, 3, 2, 3, 1], [3, 1, 1, 5, 2, 6], [2, 6, 1, 5, 0, 4]], | |
| [[1, 5, 3, 2, 1, 3], [1, 5, 2, 6, 3, 2], [1, 5, 0, 2, 2, 6], [1, 0, 0, 2, 1, 5]], | |
| [[2, 3, 0, 1, 0, 4], [2, 6, 2, 3, 0, 4]], | |
| [[2, 3, 2, 0, 2, 6]], | |
| [[1, 5, 0, 4, 0, 2], [1, 3, 1, 5, 0, 2]], | |
| [[1, 5, 1, 0, 1, 3]], | |
| [[0, 2, 0, 1, 0, 4]], | |
| [], | |
| ] | |
| def create_mc_lookup_table(): | |
| cases = torch.zeros(256, 5, 3, dtype=torch.long) | |
| masks = torch.zeros(256, 5, dtype=torch.bool) | |
| edge_to_index = { | |
| (0, 1): 0, | |
| (2, 3): 1, | |
| (4, 5): 2, | |
| (6, 7): 3, | |
| (0, 2): 4, | |
| (1, 3): 5, | |
| (4, 6): 6, | |
| (5, 7): 7, | |
| (0, 4): 8, | |
| (1, 5): 9, | |
| (2, 6): 10, | |
| (3, 7): 11, | |
| } | |
| for i, case in enumerate(MC_TABLE): | |
| for j, tri in enumerate(case): | |
| for k, (c1, c2) in enumerate(zip(tri[::2], tri[1::2])): | |
| cases[i, j, k] = edge_to_index[(c1, c2) if c1 < c2 else (c2, c1)] | |
| masks[i, j] = True | |
| return cases, masks | |
| RENDERER_CONFIG = {} | |
| def renderer_model_from_original_config(): | |
| model = ShapERenderer(**RENDERER_CONFIG) | |
| return model | |
| RENDERER_MLP_ORIGINAL_PREFIX = "renderer.nerstf" | |
| RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX = "encoder.params_proj" | |
| def renderer_model_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
| diffusers_checkpoint = {} | |
| diffusers_checkpoint.update( | |
| {f"mlp.{k}": checkpoint[f"{RENDERER_MLP_ORIGINAL_PREFIX}.{k}"] for k in model.mlp.state_dict().keys()} | |
| ) | |
| diffusers_checkpoint.update( | |
| { | |
| f"params_proj.{k}": checkpoint[f"{RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX}.{k}"] | |
| for k in model.params_proj.state_dict().keys() | |
| } | |
| ) | |
| diffusers_checkpoint.update({"void.background": model.state_dict()["void.background"]}) | |
| cases, masks = create_mc_lookup_table() | |
| diffusers_checkpoint.update({"mesh_decoder.cases": cases}) | |
| diffusers_checkpoint.update({"mesh_decoder.masks": masks}) | |
| return diffusers_checkpoint | |
| # done renderer | |
| # TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?) | |
| def split_attentions(*, weight, bias, split, chunk_size): | |
| weights = [None] * split | |
| biases = [None] * split | |
| weights_biases_idx = 0 | |
| for starting_row_index in range(0, weight.shape[0], chunk_size): | |
| row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) | |
| weight_rows = weight[row_indices, :] | |
| bias_rows = bias[row_indices] | |
| if weights[weights_biases_idx] is None: | |
| assert weights[weights_biases_idx] is None | |
| weights[weights_biases_idx] = weight_rows | |
| biases[weights_biases_idx] = bias_rows | |
| else: | |
| assert weights[weights_biases_idx] is not None | |
| weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) | |
| biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) | |
| weights_biases_idx = (weights_biases_idx + 1) % split | |
| return weights, biases | |
| # done unet utils | |
| # Driver functions | |
| def prior(*, args, checkpoint_map_location): | |
| print("loading prior") | |
| prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) | |
| prior_model = prior_model_from_original_config() | |
| prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) | |
| del prior_checkpoint | |
| load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) | |
| print("done loading prior") | |
| return prior_model | |
| def prior_image(*, args, checkpoint_map_location): | |
| print("loading prior_image") | |
| print(f"load checkpoint from {args.prior_image_checkpoint_path}") | |
| prior_checkpoint = torch.load(args.prior_image_checkpoint_path, map_location=checkpoint_map_location) | |
| prior_model = prior_image_model_from_original_config() | |
| prior_diffusers_checkpoint = prior_image_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) | |
| del prior_checkpoint | |
| load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) | |
| print("done loading prior_image") | |
| return prior_model | |
| def renderer(*, args, checkpoint_map_location): | |
| print(" loading renderer") | |
| renderer_checkpoint = torch.load(args.transmitter_checkpoint_path, map_location=checkpoint_map_location) | |
| renderer_model = renderer_model_from_original_config() | |
| renderer_diffusers_checkpoint = renderer_model_original_checkpoint_to_diffusers_checkpoint( | |
| renderer_model, renderer_checkpoint | |
| ) | |
| del renderer_checkpoint | |
| load_checkpoint_to_model(renderer_diffusers_checkpoint, renderer_model, strict=True) | |
| print("done loading renderer") | |
| return renderer_model | |
| # prior model will expect clip_mean and clip_std, whic are missing from the state_dict | |
| PRIOR_EXPECTED_MISSING_KEYS = ["clip_mean", "clip_std"] | |
| def load_prior_checkpoint_to_model(checkpoint, model): | |
| with tempfile.NamedTemporaryFile() as file: | |
| torch.save(checkpoint, file.name) | |
| del checkpoint | |
| missing_keys, unexpected_keys = model.load_state_dict(torch.load(file.name), strict=False) | |
| missing_keys = list(set(missing_keys) - set(PRIOR_EXPECTED_MISSING_KEYS)) | |
| if len(unexpected_keys) > 0: | |
| raise ValueError(f"Unexpected keys when loading prior model: {unexpected_keys}") | |
| if len(missing_keys) > 0: | |
| raise ValueError(f"Missing keys when loading prior model: {missing_keys}") | |
| def load_checkpoint_to_model(checkpoint, model, strict=False): | |
| with tempfile.NamedTemporaryFile() as file: | |
| torch.save(checkpoint, file.name) | |
| del checkpoint | |
| if strict: | |
| model.load_state_dict(torch.load(file.name), strict=True) | |
| else: | |
| load_checkpoint_and_dispatch(model, file.name, device_map="auto") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| parser.add_argument( | |
| "--prior_checkpoint_path", | |
| default=None, | |
| type=str, | |
| required=False, | |
| help="Path to the prior checkpoint to convert.", | |
| ) | |
| parser.add_argument( | |
| "--prior_image_checkpoint_path", | |
| default=None, | |
| type=str, | |
| required=False, | |
| help="Path to the prior_image checkpoint to convert.", | |
| ) | |
| parser.add_argument( | |
| "--transmitter_checkpoint_path", | |
| default=None, | |
| type=str, | |
| required=False, | |
| help="Path to the transmitter checkpoint to convert.", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint_load_device", | |
| default="cpu", | |
| type=str, | |
| required=False, | |
| help="The device passed to `map_location` when loading checkpoints.", | |
| ) | |
| parser.add_argument( | |
| "--debug", | |
| default=None, | |
| type=str, | |
| required=False, | |
| help="Only run a specific stage of the convert script. Used for debugging", | |
| ) | |
| args = parser.parse_args() | |
| print(f"loading checkpoints to {args.checkpoint_load_device}") | |
| checkpoint_map_location = torch.device(args.checkpoint_load_device) | |
| if args.debug is not None: | |
| print(f"debug: only executing {args.debug}") | |
| if args.debug is None: | |
| print("YiYi TO-DO") | |
| elif args.debug == "prior": | |
| prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) | |
| prior_model.save_pretrained(args.dump_path) | |
| elif args.debug == "prior_image": | |
| prior_model = prior_image(args=args, checkpoint_map_location=checkpoint_map_location) | |
| prior_model.save_pretrained(args.dump_path) | |
| elif args.debug == "renderer": | |
| renderer_model = renderer(args=args, checkpoint_map_location=checkpoint_map_location) | |
| renderer_model.save_pretrained(args.dump_path) | |
| else: | |
| raise ValueError(f"unknown debug value : {args.debug}") | |