Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc and Tencent Hunyuan Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, BertModel, T5EncoderModel | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| HunyuanDiT2DModel, | |
| HunyuanDiTControlNetPipeline, | |
| ) | |
| from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel | |
| from diffusers.utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = HunyuanDiTControlNetPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = HunyuanDiT2DModel( | |
| sample_size=16, | |
| num_layers=4, | |
| patch_size=2, | |
| attention_head_dim=8, | |
| num_attention_heads=3, | |
| in_channels=4, | |
| cross_attention_dim=32, | |
| cross_attention_dim_t5=32, | |
| pooled_projection_dim=16, | |
| hidden_size=24, | |
| activation_fn="gelu-approximate", | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = HunyuanDiT2DControlNetModel( | |
| sample_size=16, | |
| transformer_num_layers=4, | |
| patch_size=2, | |
| attention_head_dim=8, | |
| num_attention_heads=3, | |
| in_channels=4, | |
| cross_attention_dim=32, | |
| cross_attention_dim_t5=32, | |
| pooled_projection_dim=16, | |
| hidden_size=24, | |
| activation_fn="gelu-approximate", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL() | |
| scheduler = DDPMScheduler() | |
| text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
| text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "transformer": transformer.eval(), | |
| "vae": vae.eval(), | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "controlnet": controlnet, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| control_image = randn_tensor( | |
| (1, 3, 16, 16), | |
| generator=generator, | |
| device=torch.device(device), | |
| dtype=torch.float16, | |
| ) | |
| controlnet_conditioning_scale = 0.5 | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "control_image": control_image, | |
| "controlnet_conditioning_scale": controlnet_conditioning_scale, | |
| } | |
| return inputs | |
| def test_controlnet_hunyuandit(self): | |
| components = self.get_dummy_components() | |
| pipe = HunyuanDiTControlNetPipeline(**components) | |
| pipe = pipe.to(torch_device, dtype=torch.float16) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 16, 16, 3) | |
| expected_slice = np.array( | |
| [0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094] | |
| ) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical( | |
| expected_max_diff=1e-3, | |
| ) | |
| def test_sequential_cpu_offload_forward_pass(self): | |
| # TODO(YiYi) need to fix later | |
| pass | |
| def test_sequential_offload_forward_pass_twice(self): | |
| # TODO(YiYi) need to fix later | |
| pass | |
| def test_save_load_optional_components(self): | |
| # TODO(YiYi) need to fix later | |
| pass | |
| class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = HunyuanDiTControlNetPipeline | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_canny(self): | |
| controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 | |
| ) | |
| pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." | |
| n_prompt = "" | |
| control_image = load_image( | |
| "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" | |
| ) | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array( | |
| [0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125] | |
| ) | |
| assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
| def test_pose(self): | |
| controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16 | |
| ) | |
| pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style" | |
| n_prompt = "" | |
| control_image = load_image( | |
| "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true" | |
| ) | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array( | |
| [0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172] | |
| ) | |
| assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
| def test_depth(self): | |
| controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16 | |
| ) | |
| pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment." | |
| n_prompt = "" | |
| control_image = load_image( | |
| "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true" | |
| ) | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array( | |
| [0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547] | |
| ) | |
| assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |
| def test_multi_controlnet(self): | |
| controlnet = HunyuanDiT2DControlNetModel.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 | |
| ) | |
| controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet]) | |
| pipe = HunyuanDiTControlNetPipeline.from_pretrained( | |
| "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." | |
| n_prompt = "" | |
| control_image = load_image( | |
| "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" | |
| ) | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=[control_image, control_image], | |
| controlnet_conditioning_scale=[0.25, 0.25], | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array( | |
| [0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953] | |
| ) | |
| assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 | |