Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| DDIMScheduler, | |
| StableDiffusionControlNetPAGPipeline, | |
| StableDiffusionControlNetPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..pipeline_params import ( | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineFromPipeTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| class StableDiffusionControlNetPAGPipelineFastTests( | |
| PipelineTesterMixin, | |
| IPAdapterTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineFromPipeTesterMixin, | |
| unittest.TestCase, | |
| ): | |
| pipeline_class = StableDiffusionControlNetPAGPipeline | |
| params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| # Copied from tests.pipelines.controlnet.test_controlnet_sdxl.StableDiffusionXLControlNetPipelineFastTests.get_dummy_components | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=8, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| conditioning_embedding_out_channels=(2, 4), | |
| cross_attention_dim=8, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[4, 8], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=8, | |
| intermediate_size=16, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=2, | |
| num_hidden_layers=2, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| image = randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "pag_scale": 3.0, | |
| "output_type": "np", | |
| "image": image, | |
| } | |
| return inputs | |
| def test_pag_disable_enable(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline (expect same output when pag is disabled) | |
| pipe_sd = StableDiffusionControlNetPipeline(**components) | |
| pipe_sd = pipe_sd.to(device) | |
| pipe_sd.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["pag_scale"] | |
| assert ( | |
| "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | |
| ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
| out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
| # pag disabled with pag_scale=0.0 | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["pag_scale"] = 0.0 | |
| out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| # pag enabled | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
| assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
| def test_pag_cfg(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe_pag(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == ( | |
| 1, | |
| 64, | |
| 64, | |
| 3, | |
| ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" | |
| expected_slice = np.array( | |
| [0.45505235, 0.2785938, 0.16334778, 0.79689944, 0.53095645, 0.40135607, 0.7052706, 0.69065094, 0.41548574] | |
| ) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" | |
| def test_pag_uncond(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["guidance_scale"] = 0.0 | |
| image = pipe_pag(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == ( | |
| 1, | |
| 64, | |
| 64, | |
| 3, | |
| ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" | |
| expected_slice = np.array( | |
| [0.45127502, 0.2797252, 0.15970308, 0.7993157, 0.5414344, 0.40160775, 0.7114598, 0.69803864, 0.4217583] | |
| ) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" | |